

# PEAT STABILITY ASSESSMENT REPORT FOR ARDDERROO WIND FARM, CO. GALWAY

Prepared for:
McCarthy Keville O'Sullivan

**November 2018** 

AGEC Ltd
The Grainstore
Singletons Lane
Bagenalstown
Co. Carlow
Ireland

E-mail: info@agec.ie



#### DOCUMENT APPROVAL FORM

| Document title:        |                                                                      |        | Peat Stability Assessment Report for Ardderroo Wind Farm |                                                    |                               |  |  |
|------------------------|----------------------------------------------------------------------|--------|----------------------------------------------------------|----------------------------------------------------|-------------------------------|--|--|
| File reference Number: |                                                                      | 182    | Document Revision No.                                    |                                                    | 2                             |  |  |
|                        |                                                                      |        |                                                          |                                                    |                               |  |  |
| File Reference         | Docume                                                               | nt     | Amend                                                    | ment/Comment                                       |                               |  |  |
| Number                 | Revision                                                             | No.    |                                                          |                                                    |                               |  |  |
| 1825_027               | 0                                                                    |        | Draft                                                    |                                                    |                               |  |  |
| 1825_054               | 1825_054 1 Updated based on comments from McCarthy Keville O'Sulliva |        |                                                          |                                                    | McCarthy Keville O'Sullivan & |  |  |
|                        |                                                                      | Enerco |                                                          |                                                    |                               |  |  |
| 1825_070               | 2                                                                    |        | Update                                                   | ed based on further comments from McCarthy Keville |                               |  |  |
|                        |                                                                      |        | O'Sulliv                                                 | ran                                                |                               |  |  |

| Task          | Nominated authority                                 | Approved (signature) |
|---------------|-----------------------------------------------------|----------------------|
| Prepared by   | Author(s):<br>Gerry Kane/Raymond<br>Grennan         | Gerry Kune           |
| Checked by    | Geotechnical Project<br>Manager:<br>Paul Jennings   | Poul January         |
| Approved by   | Geotechnical Project Director:<br>Turlough Johnston | T. Dust              |
| Quality check | Quality Manager:<br>Marion English                  | Marion English       |

This document has been prepared for the titled project and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of AGEC being obtained. AGEC accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purposes agrees, and will by such use or reliance be taken to confirm his agreement to indemnify AGEC for all loss or damage resulting therefrom. AGEC accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned.



## **TABLE OF CONTENTS**

|   |        |                                                                             | Page No. |
|---|--------|-----------------------------------------------------------------------------|----------|
|   | TITLE  | PAGE                                                                        | i        |
|   | DOCL   | JMENT APPROVAL FORM                                                         | ii       |
|   | TABLE  | E OF CONTENTS                                                               | iii      |
| 1 | NON-   | TECHNICAL SUMMARY                                                           | 1        |
| 2 | INTRO  | DDUCTION                                                                    | 3        |
|   | 2.1    | Background and Experience                                                   | 3        |
|   | 2.2    | Peat Stability Assessment Methodology                                       | 3        |
|   | 2.3    | Peat Failure Definition                                                     | 5        |
|   | 2.4    | Main Approaches to Assessing Peat Stability                                 | 5        |
|   | 2.5    | Peat Stability Assessment – Deterministic Approach                          | 6        |
|   | 2.6    | Applicability of the Factor of Safety (Deterministic) Approach for Peat Slo | pes 7    |
|   | 2.7    | Assessment of Intense Rainfall and Extreme Dry Events on the Peat Slope     | s 8      |
| 3 | SITE D | DESCRIPTION                                                                 | 9        |
| 4 | DESK   | STUDY AND SITE RECONNAISSANCE                                               | 10       |
|   | 4.1    | Desk Study                                                                  | 10       |
|   | 4.2    | Site Reconnaissance                                                         | 10       |
| 5 | FINDI  | NGS OF SITE RECONNAISSANCE                                                  | 11       |
|   | 5.1    | Previous Failures                                                           | 11       |
|   | 5.2    | Ground Investigation                                                        | 11       |
|   | 5.3    | Findings of Wind Farm Site Reconnaissance                                   | 13       |
|   | 5.4    | Findings of Alternative Construction Access Road Site Reconnaissance        | 16       |
| 6 | SITE C | GROUND CONDITIONS                                                           | 18       |
|   | 6.1    | Soils & Subsoils                                                            | 18       |
|   | 6.2    | Bedrock                                                                     | 18       |
| 7 | PEAT   | DEPTHS, STRENGTH & SLOPE AT PROPOSED INFRASTRUCTURE LOCATIONS               | 19       |
| 8 | PEAT   | STABILITY ASSESSMENT                                                        | 23       |
|   | 8.1    | Methodology for Peat Stability Assessment                                   | 23       |
|   | 8.2    | Analysis to Determine Factor of Safety (Deterministic Approach)             | 25       |
|   | 8.3    | Results of Analysis                                                         | 27       |
|   |        | 8.3.1 Undrained Analysis for the peat                                       | 27       |
|   |        | 8.3.2 Drained Analysis for the peat                                         | 30       |
| 9 | RISK A | ASSESSMENT                                                                  | 32       |
|   | 9.1    | Summary of Risk Assessment Results                                          | 32       |



| 10 | SUMMARY AN                                                     | ND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                   | 34 |
|----|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | 10.1 Summa                                                     | ary                                                                                                                                                                                                                                                                                                                                                                  | 34 |
|    | 10.2 Recom                                                     | mendations                                                                                                                                                                                                                                                                                                                                                           | 35 |
| 11 | REFERENCES                                                     |                                                                                                                                                                                                                                                                                                                                                                      | 36 |
|    | TABLES (withi                                                  | n text)                                                                                                                                                                                                                                                                                                                                                              |    |
|    | Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7        | Peat Depth & Slope Angle at Proposed Infrastructure Locations List of Effective Cohesion and Friction Angle Values Factor of Safety Limits for Slopes Factor of Safety Results (undrained condition) Factor of Safety Results (drained condition) Risk Rating Legend Summary of Geotechnical Risk Register                                                           |    |
|    | FIGURES (with                                                  | nin text)                                                                                                                                                                                                                                                                                                                                                            |    |
|    | Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 | Flow Diagram Showing General Methodology for Peat Stability A<br>Peat Slope Showing Balance of Forces to Maintain Stability<br>Ground Investigation Location Plan<br>Peat Depth Contour Plan<br>Construction Buffer Zone Plan<br>Undrained Shear Strength (c <sub>u</sub> ) for Peat with Depth<br>Factor of Safety Plan - Short Term Critical Condition (Undrained) |    |
|    | APPENDICES                                                     |                                                                                                                                                                                                                                                                                                                                                                      |    |
|    | Appendix A Appendix B Appendix C Appendix D Appendix E         | Photos from Site Visit Ground Investigation Data – Trial Pit Logs & Photographs Geotechnical Risk Register Calculated FoS for Peat Slopes on Site Methodology for Risk Assessment                                                                                                                                                                                    |    |



## **ACRONYMS AND SYMBOLS**

AGEC Applied Ground Engineering Consultants Ltd

BS British Standard c' Effective cohesion

CMS Construction Method Statement

c<sub>u</sub> Undrained strength

EC7 Eurocode 7
FoS Factor of Safety

GSI Geological Survey of Ireland
HES Hydro Environmental Services

kPa Kilopascals

m bgl Metres below ground level

m Metres mm Millimetres

mOD Metres ordnance datum

ø' Effective angle of shearing resistance
PHRAG Peat Hazard and Risk Assessment Guide



#### 1 NON-TECHNICAL SUMMARY

Applied Ground Engineering Consultants Ltd (AGEC) was engaged by McCarthy Keville O'Sullivan to undertake an assessment of the proposed Ardderroo wind farm site with respect to peat stability. In accordance with planning guidelines compiled by the Department of the Environment, Heritage and Local Government (DoEHLG), where peat is present on a proposed wind farm development, a peat stability assessment is required.

The findings of the peat assessment, which involved analysis of over 920 locations, showed that the site has an acceptable margin of safety and is suitable for the proposed wind farm development. The findings include recommendations and control measures for construction work in peat lands to ensure that all works adhere to an acceptable standard of safety.

The proposed wind farm comprises 25 no. wind turbines with associated infrastructure including access roads (new and upgrading of existing roads), substation, construction compounds, met mast and borrow pits. In addition the report includes an assessment of the proposed alternative construction access road and junction from N59 (national road).

The northern part of the site (turbines T1 to T6) is located on elevated ground that is situated to the east of Knocknalee Hill and south of Buffy Lough. The southern part of the site (T7 to T25) comprises low-lying undulating generally flat terrain. Most of the proposed site is covered by blanket bog that has been planted with conifer plantations. Whilst slope inclinations in the northern part of the site are greater the combination of a relatively high peat strength and thin and variable cover of blanket peat results in an acceptable risk of peat stability. In relation to the southern part of the site, whilst the deeper peat has a relatively lower strength (compared to the shallower peat deposits in the north of the site) due to the flatter terrain this results again in an acceptable level of peat stability.

Peat thicknesses recorded during the site walkovers from over 1,700 no. probes ranged from 0 to 7.2m with an average of 1.7m. 95 percent of the peat depth readings are 4m or less and all except 2 no. of the 1,700 no. probes are 6m or less. The deepest peat was recorded in the south of the site in localised depressions where the topography is typically flatter and where some 16.8km of existing access roads are in place. Based on anecdotal information some of the existing access roads have been in operation for over 50 years. In addition, at the location of the deeper peat deposits on site either existing or proposed floating access roads will be constructed hence no excavation works will take place within the deeper peat deposits. The deeper peat areas were generally avoided when optimising the wind farm layout for site.

Ground conditions comprised mainly of peat overlying locally glacial till overlying bedrock.

A walkover including intrusive peat depth probing, a ground investigation including trial pits, desk study, stability analysis and risk assessment was carried out to assess the susceptibility of the site to peat failure following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (Scottish Executive, 2007).



The purpose of the stability analysis is to determine the stability i.e. Factor of Safety (FoS), of the peat slopes. The FoS provides a direct measure of the degree of stability of a peat slope. A FoS of less than 1.0 indicates that a slope is unstable; a FoS of greater than 1.0 indicates a stable slope. An acceptable FoS for slopes is generally taken as a minimum of 1.3.

Based on the stability assessment carried out on the peat slopes the calculated FoS's are acceptable. Localised areas of deeper peat deposits are present which may require specific construction methods, but do not represent a peat slide risk. The risk assessment at each infrastructure location includes mitigation/control measures to ensure the continued stability of the site.

The results of the stability assessment reflect the nature of the terrain and show that the site has an acceptable FoS with respect to peat stability. In addition, the terrain is considered to have a low susceptibility to peat failure due to:

- Limited historical peat failures in the area (nearest located some 22km to the northwest (occurred in 1821) and the next nearest some 35km northwest (occurred in 2006).
- AGEC walkover and assessment of sites showing absence of peat failures within the area including Galway Wind Park, Letterpeak and Lettergunnet Wind Farms, Connemara 110kV Reinforcement Project amongst others.



#### 2 INTRODUCTION

## 2.1 Background and Experience

Applied Ground Engineering Consultants Ltd (AGEC) were originally engaged in 2013 by McCarthy Keville O'Sullivan to undertake an assessment of the proposed wind farm site with respect to peat stability.

AGEC have been involved in over 120 wind farm developments in both Ireland and the UK at various stages of development i.e. preliminary feasibility, planning, design, construction and operational stage and have established themselves as one of the leading engineering consultancies in peat stability assessment, geohazard mapping in peat land areas, investigation of peat failures and site assessment of peat.

The proposed Ardderroo site is located approximately 6.6km south of Oughterard, Co. Galway.

The proposed wind farm comprises 25 no. wind turbines with associated infrastructure including access roads (new and upgrading of existing roads), construction compounds, met mast and borrow pits. In addition the report includes an assessment of the proposed alternative construction access road and junction from N59 (national road). A full and detailed description of the proposed development is provided in Chapter 4 of the Environmental Impact Assessment Report (EIAR).

A number of walkover surveys of the site were carried out by AGEC between 2013 and 2018. The peat depth data previously recorded by AGEC will be used in the assessment of peat stability for the proposed wind farm in addition to the walkover survey completed by AGEC in 2018.

A number of walkover surveys of the site were also carried out by McCarthy Keville O'Sullivan and Hydro Environmental Services (HES) between 2013 and 2018. The peat depth data recorded by McCarthy Keville O'Sullivan & HES during these walkover surveys will also be used in the assessment of peat stability for the proposed wind farm site.

## 2.2 Peat Stability Assessment Methodology

AGEC undertook the assessment following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (Scottish Executive, 2007). The Peat Hazard and Risk Assessment Guide (PHRAG) is used in this report as it provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for electricity generation projects.

The best practice guide was produced following peat failures in the Shetland Islands, Scotland in September 2003 but more pertinently following the peat failure in October 2003, during the construction of a wind farm at Derrybrien, County Galway, Ireland.

The assessment of peat stability at the proposed site included the following activities:

- (1) Site reconnaissance including shear strength and peat depth measurements
- (2) Peat stability assessment of the peat slopes on site using a deterministic and qualitative approach



- (3) Peat contour depth plan is compiled based on the peat depth probes carried out across the site by AGEC, McCarthy Keville O'Sullivan & Hydro Environmental Services
- (4) Factor of safety plan is compiled for the short term critical condition (undrained) for over 920 no. FoS points analysed across the site
- (5) Construction buffer zone plan identifies areas with an elevated or higher construction risk where mitigation/control measures will need to be implemented during construction to minimise the potential risks and ensure they are kept within an acceptable range
- (6) A risk register is compiled to assess the potential design/construction risks at the infrastructure locations and determine adequate mitigation/control measures for each location to minimise the potential risks and ensure they are kept within an acceptable range, where necessary

A flow diagram showing the general methodology for peat stability assessment is shown in Figure 1. The methodology illustrates the optimisation of the wind farm layout based on the findings from a site reconnaissance and subsequent feedback from the peat stability and risk assessment results.



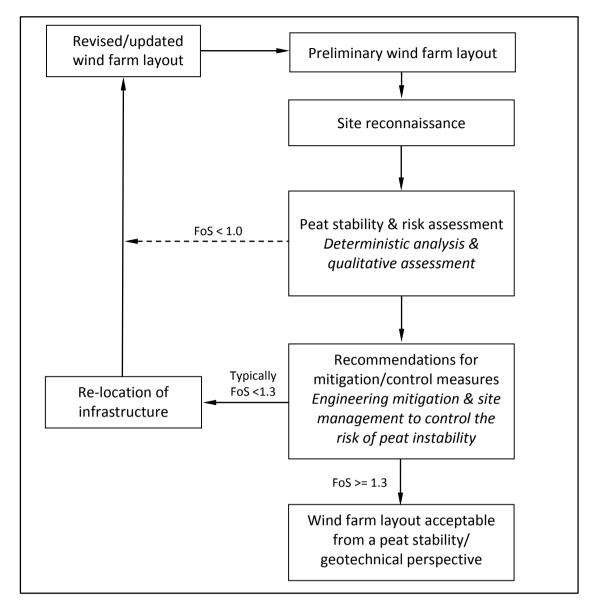



Figure 1 Flow Diagram Showing General Methodology for Peat Stability Assessment

## 2.3 Peat Failure Definition

Peat failure in this report refers to a significant mass movement of a body of peat that would have an adverse impact on proposed wind farm development and the surrounding environment. Peat failure excludes localised movement of peat that would occur (say) below an access road, creep movement or erosion type events.

The potential for peat failure at this site is examined with respect to wind farm construction and associated activity.

## 2.4 Main Approaches to Assessing Peat Stability

The main approaches for assessing peat stability for wind farm developments include the following:

(a) Geomorphological



- (b) Qualitative (judgement)
- (c) Index/Probabilistic (probability)
- (d) Deterministic (factor of safety)

Approaches (a) to (c) listed above would be considered subjective and do not provide a definitive indication of stability; in addition, a high level of judgement/experience is required which makes it difficult to relate the findings to real conditions. AGEC apply a more objective approach, the deterministic approach (as discussed in section 2.4).

As part of AGEC's deterministic approach, a qualitative risk assessment is also carried out taking into account qualitative factors, which cannot necessarily be quantified, such as the presence of mechanically cut peat, quaking peat, bog pools, sub peat water flow, slope characteristics and numerous other factors. The qualitative factors used in the risk assessment are compiled based on AGEC's experience of assessments and construction in peat land sites and peat failures throughout Ireland and the UK. This approach follows the guidelines for geotechnical risk management as given in Clayton (2001), as referenced in the best practice for Peat Hazard and Risk Assessment Guide (Scottish Executive, 2007), and takes into account the approach of MacCulloch (2005).

The risk assessment uses the results of the deterministic approach in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability to assess the risk of instability on a peat land site.

# 2.5 Peat Stability Assessment – Deterministic Approach

The peat stability assessment is carried out across a wide area of peatland to determine the stability of peat slopes and to identify areas of peatland that are suitable for development; this allows the layout of infrastructure on a particular wind farm site to be optimised. The assessment provides a numerical value (factor of safety) of the stability of individual parcels of peatland. The findings of the assessment discriminate between areas of stable and unstable peat, and areas of marginal stability where restrictions may apply. This allows for the identification of the most suitable locations for turbines, access roads and infrastructure.

A deterministic assessment requires geotechnical information and site characteristics which are obtained from desk study and site walkover, e.g. properties of peat/soil/rock, slope geometry, depth of peat, underlying strata, groundwater, etc. An adverse combination of the factors listed above could potentially result in instability. Using the information above a factor of safety is calculated for the stability of individual parcels of peatland on a site (as discussed in section 8).

The factor of safety is a measure of the stability of a particular slope. For any slope, the degree of stability depends on the balance of forces between the weight of the soil/peat working downslope (destabilising force) and the inherent strength of the peat/soil (shear resistance) to resist the downslope weight, see Figure 2.



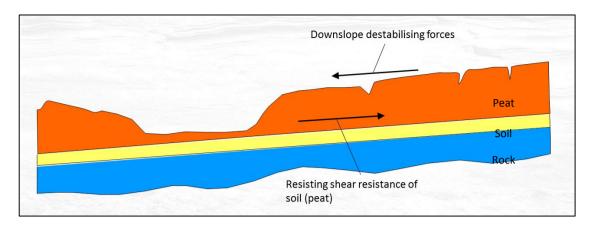



Figure 2 Peat Slope Showing Balance of Forces to Maintain Stability

The factor of safety provides a direct measure of the degree of stability of a slope and is the ratio of the shear resistance over the downslope destabilising force. Provided the available shear resistance is greater than the downslope destabilising force then the factor of safety will be greater than 1.0 and the slope will remain stable. If the factor of safety is less than 1.0 the slope is unstable and liable to fail. The acceptable range for factor of safety is typically from 1.3 to 1.4.

## 2.6 Applicability of the Factor of Safety (Deterministic) Approach for Peat Slopes

The factor of safety approach is a standard engineering approach in assessing slopes which is applied to many engineering materials, such as peat, soil, rock, etc.

The factor of safety approach is included in The Peat Landslide Hazard and Risk Assessments Best Practice Guide for Proposed Electricity Generation Developments (Scottish Executive, 2007); see section 5.2.2 of the guide. This guide provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for electricity generation projects.

Furthermore, the best practice guide notes that the results from the factor of safety approach 'has provided the most informative results' with respect to analysing peat stability (section 5.2.2 of the guide).

The factor of safety approach in this report includes undrained (short-term stability) and drained (long-term stability) analyses. The undrained condition is the critical condition for the development. The purpose of the drained analysis is to identify the relative susceptibility of rainfall-induced failures at the site.

Notwithstanding the above, the stability analysis used by AGEC in this report also includes qualitative factors to determine the potential for peat stability i.e. the analysis used does not solely rely on the factor of safety approach.

The deterministic analysis is considered an acceptable engineering design approach. This concurs with the best practice guide referenced above.



## 2.7 Assessment of Intense Rainfall and Extreme Dry Events on the Peat Slopes

The deterministic approach carried out by AGEC examines intense rainfall and extreme dry events. The deterministic approach includes an undrained (short-term stability) and drained (long-term stability) analysis to assess the factor of safety for the peat slopes against a peat failure.

The drained loading condition applies in the long-term. This condition examines the effect of in particular, the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes. For the drained analysis the level of the water table above the failure surface is required to calculate the factor of safety for the peat slope.

In order to represent varying water levels within the peat slopes, a sensitivity analysis is carried out which assesses varying water level in the peat slopes i.e. water levels ranging between 0 and 100% of the peat depth is conducted, where 0% equates to the peat been completely dry and 100% equates to the peat been fully saturated.

By carrying out such a sensitivity analysis with varying water level in the peat slopes, the effects of intense rainfall and extreme dry events are considered and analysed. The results of which are presented in Section 8 of this report.



#### 3 SITE DESCRIPTION

The terrain and ground conditions at the Ardderroo site are best described when separated out into a northern and southern part.

The northern part of the site (turbines T1 to T6) is located on elevated ground that is situated to the east of Knocknalee Hill and south of Buffy Lough. The southern part of the site (turbines T7 to T25) comprises low-lying undulating generally flat terrain. Most of the proposed site is covered by blanket bog that has been planted with conifer plantations. The conifer plantations are being actively managed.

The northern part of the site generally comprises a thinner peat cover with an average peat depth at turbines (T1 to T6) of 1m. The ground conditions in the northern part of the site comprise generally a thin and variable cover of blanket peat over locally glacial soil with bedrock at shallow depth. Numerous bedrock exposures are present indicating the shallow depth of bedrock. Given the thin peat cover, the peat has a relatively high strength (compared to deeper peat deposits).

The southern part of the site (turbines T7 to T25) generally comprises localised deeper peat cover than the northern part of the site as a result of the lower-lying and generally flat terrain. The ground conditions in the southern part of the site comprise generally a relatively deeper cover of blanket peat over glacial soil over granite bedrock, which at localised areas rise to the surface.



#### 4 DESK STUDY AND SITE RECONNAISSANCE

## 4.1 Desk Study

The main relevant sources of interest with respect to the site include:

- Geological plans
- Ordnance Survey plans
- Literature review of peat failures

The Geological Survey of Ireland (GSI, 2004) geological plans for the site were used to verify the bedrock conditions.

The ordnance surveys plans were reviewed to determine if any notable features or areas of particular interest (from a geotechnical point of view) are present on the site.

The desk study also included a review of both published literature and GSI online dataset viewer (GSI, 2006 & 2017) on peat failures/landslides in the vicinity of the site.

#### 4.2 Site Reconnaissance

As part of the peat stability assessment at the proposed wind farm, numerous site reconnaissance's were carried out by AGEC between 2013 and 2018 with recording of salient geomorphological features with respect to the wind farm development and to provide peat thickness and preliminary assessment of peat strength.

The following salient geomorphological features were considered:

- Active, incipient or relict instability (where present) within the peat deposits
- Presence of shallow valley or drainage line
- Wet areas
- Any change in vegetation
- Peat depth
- Slope inclination and break in slope

The survey covered the proposed locations for the turbine bases, substation, met mast, construction compounds, existing and proposed new access roads and all associated infrastructure.

The method adopted for carrying out the site reconnaissance relied on practitioners carrying out a visual assessment of the site supplemented with measurement of slope inclinations.

The findings of the site reconnaissance for the wind farm site and the alternative construction access road and junction from the N59 are presented separately in sections 5.3 and 5.4 of this report.



#### 5 FINDINGS OF SITE RECONNAISSANCE

#### 5.1 Previous Failures

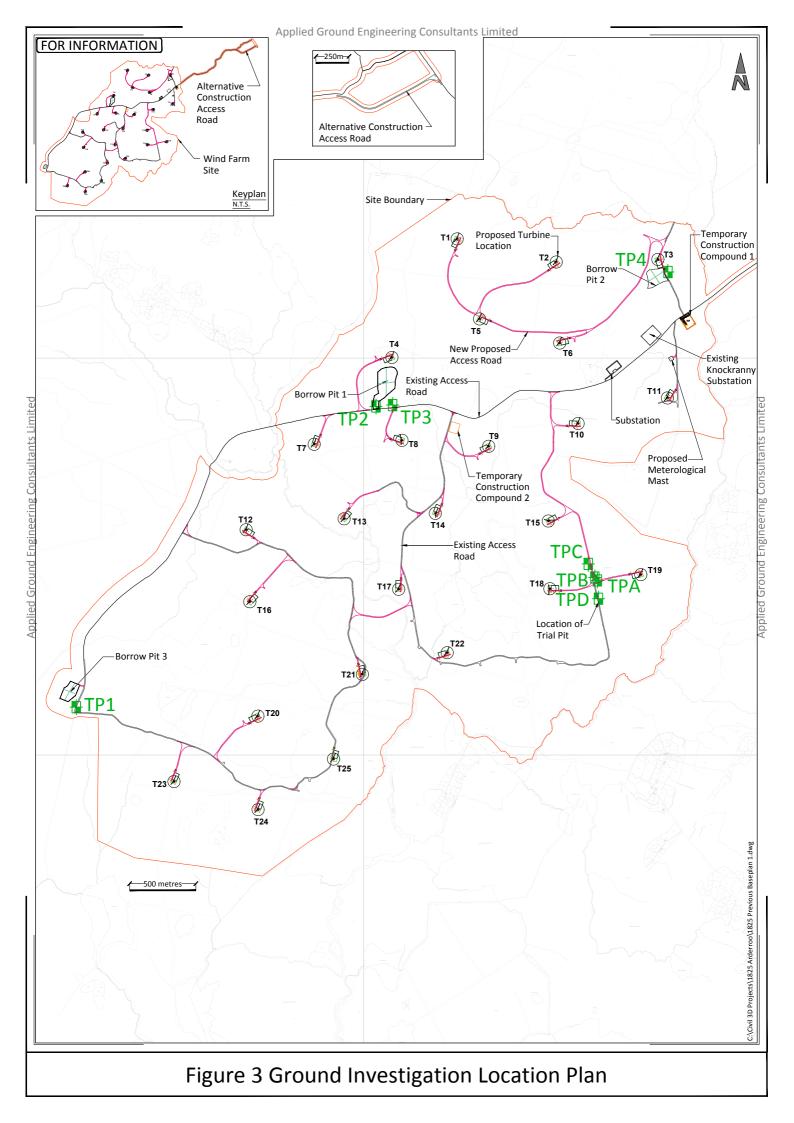
The investigation works carried out at the study area have been used in conjunction with a desk study review to assess the susceptibility of the study area to peat failure.

There are no recorded peat failures at the Ardderroo wind farm site (GSI, 2006 & GSI, 2017).

The nearest documented peat failure is located some 22km northwest of the study area. The failure recorded occurred at Joyces Country, Co. Galway in 1821, no description of the failure mechanism is given. The material and terrain type were described as peat and blanket bog respectively.

Another recorded peat failure located some 35km northwest of the site occurred in December 2006 at Letterass, Co. Mayo. The failure mechanism is described as a flow and the material and terrain type were described as peat and high hill respectively.

Based on the review carried out no other peat failures occurred within a 40km radius of the site.


The presence, or otherwise, of relict peat failures or clustering of relict failures within an area is an indicator that particular site conditions exist that pre-dispose a site to failure or not as the case may be. Hence based on the historical data reviewed above it can be concluded that site conditions in the area of the Ardderroo site have low potential for peat failure.

## 5.2 Ground Investigation

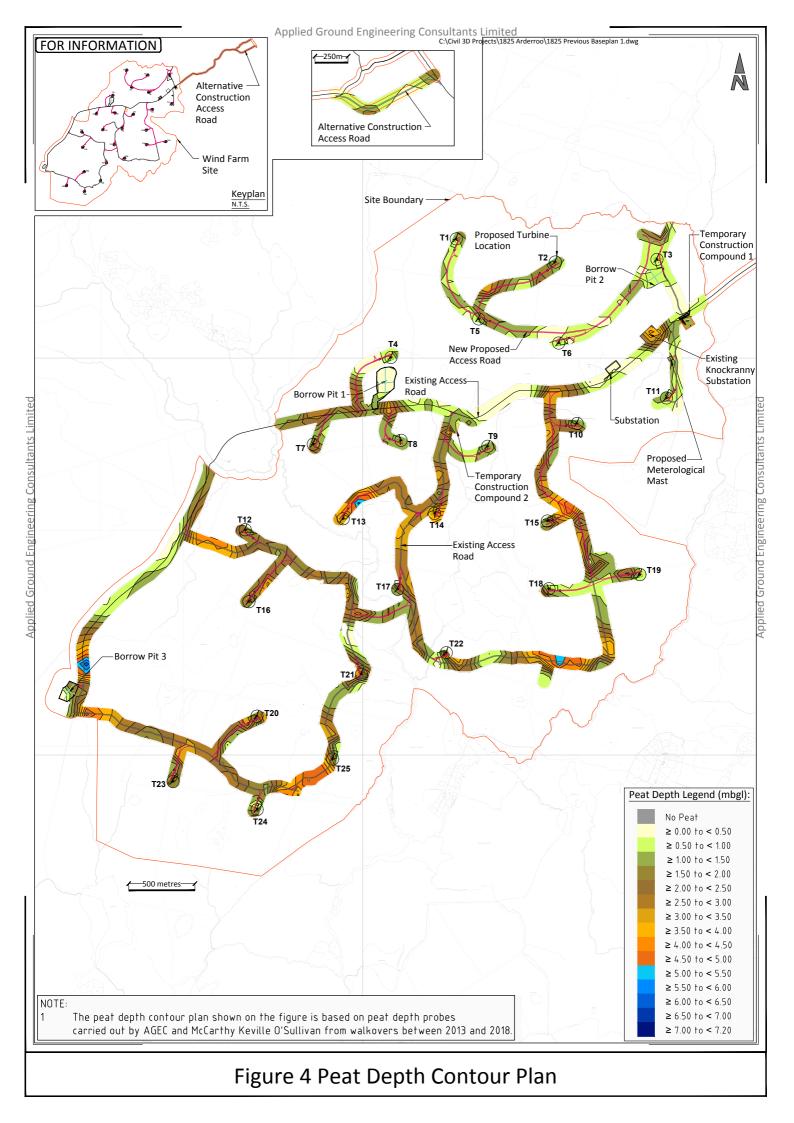
Two ground investigations were carried out at the Ardderroo site by AGEC in July 2015 and November 2016. In total 8 no. trial pits were excavated (4 no. from each investigation). 4 no. trial pits were carried out at the proposed borrow pit locations and 4 no. trial pits were carried out in the southeast of the site. The trial pits were carried out to depths of up to 3.5m below ground level (bgl). The locations of the trial pits are shown on Figure 3 and the trial pit logs and photographs are included in Appendix B of this report. The purpose of the ground investigations were to assess the ground conditions and the potential for borrow pits at various locations across the site.

Based on the trial pits carried out the ground conditions were typically categorised into the following deposits:

- Peat Typically described as firm and spongy black & brown fibrous to amorphous peat. Peat thicknesses ranged from 0.5 to 3.4m.
- Glacial Granular Soils Medium dense slightly silty gravelly Sand with occasional cobbles and boulders.
- Bedrock Possible bedrock was encountered in the trial pits from depths ranging from 1.9 to 3.4m bgl. Bedrock was encountered in 7 of the 8 no. trial pits. The bedrock was described as weathered Granite.






## 5.3 Findings of Wind Farm Site Reconnaissance

The site reconnaissance comprised numerous walkover inspections of the site between 2013 and 2018. The most recent site reconnaissance carried out by AGEC was completed in July 2018.

The walkovers were carried out by geotechnical engineers experienced in peat failure assessment. The findings from the site reconnaissance have been used to optimise the layout of the infrastructure on site.

The main findings of the site reconnaissance's are as follows:

- (1) The northern part of the site (turbines T1 to T6) is located on elevated ground that is situated to the east of Knocknalee Hill and south of Buffy Lough. The southern part of the site (turbines T7 to T25) comprises low-lying undulating generally flat terrain. Most of the proposed site is covered by blanket bog that has been planted with conifer plantations (Appendix A Photos 1 and 2).
- (2) Peat depths recorded during the site reconnaissance's from over 1,700 no. probes range from 0 to 7.2m with an average of 1.7m (Figure 4). 95 percent of the peat depth readings are 4m or less and all except 2 no. of the 1,700 no. probes are 6m or less. The deepest peat was recorded in the south of the site in localised depressions where the topography is typically flatter. The deepest peat deposits on site have been identified and are highlighted on the construction buffer zone plan (Figure 5).
- (3) The peat depths recorded at the turbine locations varied from 0.3 to 3.7m with an average depth of 1.7m. The turbines where relatively deep peat deposits of in excess of 2.5m are present have shallow slope angles typically ranging from 1 to 2 degrees.
- (4) The access roads for the wind farm comprise upgrading of existing access roads and construction of new proposed access roads. The existing access roads have been constructed using both excavate & replace and floated construction techniques (Photos 3 and 4). The upgrading works and construction of new proposed access roads will be carried out using both excavate and replace and floated construction techniques.
- (5) With respect to the existing access roads, peat depths are typically less than 2m in the north of the site, with localised depths of up to 3.5m. Typically peat depths varied between less than 1m and up to 4m in the south of the site with localised depths of up to 7.2m. Up to 16.8km of existing access roads are present across the site and based on anecdotal information have been in operation for a number of years.
- (6) The typical make-up of the existing floating access roads on site appears to be (locally) tree brash/trunks laid directly onto the peat surface and/or geogrid overlain by up to 500mm of coarse granular fill.
- (7) With respect to the new proposed access roads, peat depths along the proposed route are typically less than 2.5m in the north of the site and typically between less than 1m and up to 4m in the south of the site.





- (8) Slope angles at the turbine locations range from 0 to 10 degrees with an average of 4 degrees. These slope angle readings are based on site recordings. The elevation across the study area varies from 70 to 227mOD based on ordnance survey maps.
- (9) At localised areas across the site, steep slopes of up to 20 degrees were recorded during the site walkover particularly in the north of the site where the peat cover is generally shallower and minimal construction work is proposed in the area.
- (10) The peat situated on the raised areas particularly in the north of the site, has a notable vegetation cover, which is generally indicative of relatively well-drained peat.
- (11) Localised areas of waterlogged peat and surface water are present at numerous areas across the site, primarily in the south. This is not unexpected given the type of terrain present on site.
- (12) No evidence of mechanically cut peat or relict and active peat cuttings were noted on site.
- (13) Seven localised areas of deep weak peat were identified during the site walkover (Figure 5). Locally the peat in these areas was recorded as quaking (or buoyant) indicating highly saturated peat, which would be considered to have low strength. These areas are within flatter locations and do not represent a peat slide risk but a safety risk during construction. Consequently, these areas have an elevated construction risk and will be subject to additional mitigation/control measures (Appendix C).
- (14) Three potential borrow pits have been identified across the site. Borrow pits will be used to provide suitable material to construct foundations, hardstandings and for access roads. A ground investigation in the form of trial pits was carried out at each of the borrow pits to confirm bedrock level (see section 5.2 of this report). Following removal of the soil/rock from a borrow pit, it is proposed to reinstate the borrow pit by placing excavated peat & spoil within cells inside the borrow pit. By placing the excavated peat & spoil within the confines of the borrow pit this prevents inadvertent placement of peat arising's on the site, which can result in potential peat instability.
- (15) In addition to the reinstatement of peat and spoil within the borrow pits, it is proposed to place excavated arising's at designated spoil areas alongside the access roads in the south of the site where the topography is typically flat. Given the relatively flat topography present at the southern part of the site, the placement of peat & spoil alongside the access roads is deemed appropriate. Further information on the reinstatement of the borrow pits with excavated peat and spoil is given in the Peat & Spoil Management Plan for site (AGEC 2018).
- (16) No evidence of past failures or any significant signs of peat instability were noted on site.
- (17) The conclusions from the site reconnaissance are as follows:
  - (a) The peat depths recorded at the turbine locations varied from 0.3 to 3.7m with an average depth of 1.7m. The turbines where relatively deep peat deposits of



- in excess of 2.5m are present have shallow slope angles typically ranging from 1 to 2 degrees and hence are considered to have a low risk of peat instability.
- (b) Mitigation/control measures for each infrastructure location are given in the risk register (Appendix C).
- (c) A construction buffer zone plan has been produced for the site (Figure 5). This Figure shows areas which have an elevated or higher construction risk due to the terrain and features encountered during the site reconnaissance. Additional mitigation/control measures will be implemented in these areas, as required (see Appendix C).

## 5.4 Findings of Alternative Construction Access Road Site Reconnaissance

A site reconnaissance of an alternative construction access road was carried out in July 2018. The alternative construction access road involves the construction of an 830m length of access road for the wind farm off the N59 Oughterard to Moycullen national road. The alternative access will serve all construction and turbine delivery traffic during the construction stage of the project. A design of the alternative construction access road was undertaken by Tobin Consulting Engineers (2018) for the planning application.

The main findings of the site reconnaissance are as follows:

- (1) The proposed alternative construction access road is located in a shallow blanket peat area on undulating terrain which is currently used as a pasture area (Appendix A Photos 8 & 9).
- (2) Peat depths recorded during the site reconnaissance vary from 0 to 1.9m with an average of 0.7m (Figure 4).
- (3) Localised areas of waterlogged peat and surface water are present at a few localised areas along the proposed alternative access route. This is not unexpected given the type of terrain present on site.
- (4) Slope angles along the proposed alternative access route typically range from 1 to 12 degrees with an average of 4 degrees. Localised steeper slopes are present. The slope angle readings are based on site recordings. The elevation across the study area varies from 30 to 60mOD based on ordnance survey maps.
- (5) The peat across the study area has a vegetation cover which is indicative of well drained peat. The land is currently used as a pasture area.
- (6) Numerous rock outcrops were noted along the proposed alternative access route (Photo 10). Ground conditions along the route are typically blanket peat overlying rock or till material.
- (7) The alternative construction access road will be constructed using an excavate & replace construction technique which is deemed suitable for the ground conditions and terrain.

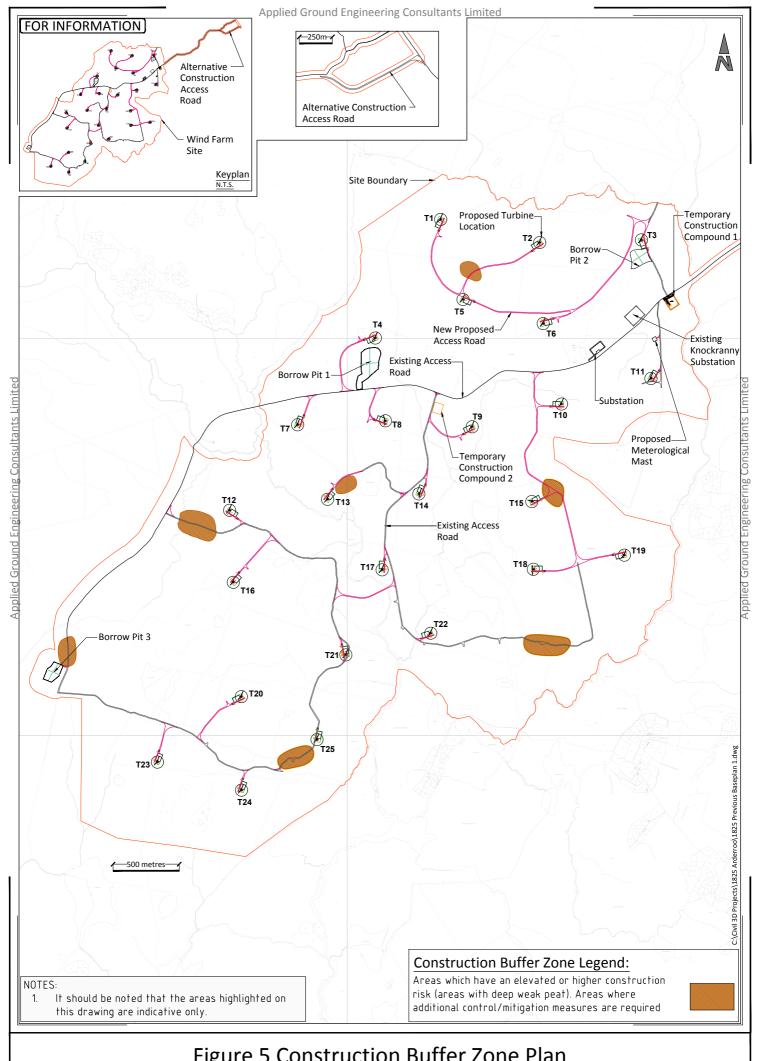



Figure 5 Construction Buffer Zone Plan



#### 6 SITE GROUND CONDITIONS

#### 6.1 Soils & Subsoils

Peat depths recorded during the site walkovers from over 1,700 no. probes range from 0 to 7.2m with an average of 1.7m. 95 percent of the peat depth readings are 4m or less and all except 2 no. of the 1,700 no. probes are 6m or less.

Based on the site walkover and ground investigation at the site the superficial deposits were typically described as firm brown/black fibrous Peat (in the shallow peat areas) and spongy and plastic black amorphous Peat (in the deeper peat areas), overlying firm and stiff light brown/grey slightly gravelly sandy Clay with cobbles and boulders or silty gravelly Sand overlying weathered bedrock (Photos 6 & 7).

A review of the GSI subsoils maps indicate that the site is underlain by blanket peat, with occasional outcrops of rock at surface.

#### 6.2 Bedrock

The underlying bedrock was described by the Geological Survey of Ireland (GSI, 2004) and shown on Sheet 14 (Geology of Galway Bay). In the area of the Ardderroo site, Sheet 14 shows one dominant bedrock formation and numerous localised bedrock formations particularly in the north of the site.

The dominant bedrock type is from the Galway Granite Batholith formation and is megacrystic-porphyritic Granite.

The other bedrock formations are located in localised areas across the site particularly in the north of the site where the geology is quite complex. The localised bedrock types/formations at the Ardderroo site include:

- Shannapheasteen Granite
- Marginal Porphyritic Granite
- Granodiorite
- Metagabbro and related lithologies
- Granite Gneiss
- Quartz diorite gneiss
- · Cashel Schist formation
- Paragneiss Migmatite and hornfels
- Zone rich in country rock xenoliths

A number of mapped faults are shown across the site. The fault lines typically have northeast to southwest and northwest to southeast trends.

Numerous rock outcrops were recorded particularly in the north of the site.

No karst features were identified on the site following a review of the GSI database or during the site walkover. From the GSI database, a number of karst features were noted in the general area of the site, the closest been a swallow hole which is located approximately 7km east of the site.



## 7 PEAT DEPTHS, STRENGTH & SLOPE AT PROPOSED INFRASTRUCTURE LOCATIONS

As part of the site walkover, peat depth, in-situ peat strength and slope angles were recorded at various locations across the site. Peat depth probes were carried out at/near to proposed turbine locations and access roads. At turbine locations up to 5 probes were carried out around the turbine location, and an average peat depth was calculated.

The strength testing was carried out in-situ using a Geonor H-60 Hand-Field Vane Tester. From AGEC's experience hand vanes give indicative results for in-situ strength of peat and is considered best practice for the field assessment of peat strength.

Peat depths recorded during the site walkovers from over 1,700 no. probes carried out by AGEC and McCarthy Keville O'Sullivan between 2013 and 2018 range from 0 to 7.2m with an average of 1.7m. The peat depth probes carried out on site have been utilised to produce a peat depth contour plan for the site (Figure 4).

A summary of the peat depths at the proposed infrastructure locations is given in Table 1. The data presented in Table 1 is used in the peat stability assessment of the site; see Section 7 of this report.

Table 1 Peat Depth & Slope Angle at Proposed Infrastructure Locations

| Turbine | Easting | Northing | Peat Depth Range<br>(m) <sup>(1)</sup> | Average Peat<br>Depth (m) | Slope Angle<br>(°) <sup>(2)</sup> |
|---------|---------|----------|----------------------------------------|---------------------------|-----------------------------------|
| T1      | 112712  | 235902   | 0.3 to 0.9                             | 0.7                       | 2 to 3                            |
| Т2      | 113460  | 235727   | 1.0 to 1.3                             | 1.2                       | 2 to 3                            |
| Т3      | 114228  | 235747   | 0.1 to 0.9                             | 0.3                       | 8 to 10                           |
| T4      | 112219  | 235006   | 0.6 to 1.5                             | 0.9                       | 5 to 6                            |
| T5      | 112881  | 235297   | 0.5 to 0.7                             | 0.5                       | 3 to 4                            |
| Т6      | 113486  | 235115   | 0.3 to 0.9                             | 0.6                       | 1 to 2                            |
| Т7      | 111632  | 234350   | 0.5 to 2.0                             | 1.0                       | 1 to 2                            |
| Т8      | 112295  | 234380   | 0.7 to 1.6                             | 1.2                       | 3 to 4                            |
| Т9      | 112950  | 234335   | 0.9 to 1.1                             | 0.95                      | 1 to 2                            |
| T10     | 113625  | 234507   | 1 to 1.5                               | 1.25                      | 1 to 2                            |
| T11     | 114300  | 234700   | 0.7 to 1.1                             | 0.8                       | 1 to 2                            |
| T12     | 111118  | 233704   | 0.7 to 1.2                             | 0.8                       | 3 to 4                            |
| T13     | 111858  | 233787   | 3.5 to 3.7                             | 3.6                       | 1 to 2                            |
| T14     | 112547  | 233828   | 1 to 3.5                               | 2.25                      | 1 to 2                            |
| T15     | 113400  | 233770   | 0.8 to 1.2                             | 1.0                       | 1 to 2                            |



| Turbine                    | Easting | Northing | Peat Depth Range<br>(m) <sup>(1)</sup> | Average Peat<br>Depth (m) | Slope Angle<br>(°) <sup>(2)</sup> |
|----------------------------|---------|----------|----------------------------------------|---------------------------|-----------------------------------|
| T16                        | 111146  | 233160   | 1.2 to 1.6                             | 1.4                       | 1                                 |
| T17                        | 112270  | 233254   | 0.4 to 1.7                             | 1.0                       | 1 to 2                            |
| T18                        | 113412  | 233258   | 0.2 to 1.6                             | 0.85                      | 6 to 7                            |
| T19                        | 114099  | 233365   | 0.5 to 0.8                             | 0.6                       | 4 to 5                            |
| T20                        | 111206  | 232296   | 0.8 to 3.4                             | 2.2                       | 1 to 2                            |
| T21                        | 111996  | 232611   | 0.5 to 1.7                             | 1.1                       | 1 to 2                            |
| T22                        | 112637  | 232775   | 1.0 to 2.8                             | 1.8                       | 1 to 2                            |
| T23                        | 110573  | 231801   | 0.5 to 1.2                             | 0.9                       | 1 to 2                            |
| T24                        | 111208  | 231589   | 0.8 to 1.3                             | 1.0                       | 2 to 3                            |
| T25                        | 111778  | 231971   | 1.0 to 2.1                             | 1.4                       | 3 to 4                            |
| Substation                 | 113896  | 234938   | 0 to 0.5                               | 0.25                      | 8                                 |
| Temp Const. Compound 1     | 114456  | 235280   | 0.3 to 2.4                             | 1.2                       | 3                                 |
| Temp Const. Compound 2     | 112688  | 234471   | 0 to 2.0                               | 0.85                      | 5                                 |
| Met Mast                   | 114327  | 234996   | 0.6 to 2.5                             | 1.7                       | 1                                 |
| Alt. Const.<br>Access Road | -       | -        | 0 to 1.9                               | 0.7                       | Varies                            |

Note (1) Based on probe results from the site walkovers. The range of peat depths for the infrastructure locations are generally based on a 10m grid carried out around the infrastructure element, where accessible.

Note (2) Slope angle obtained during site survey by AGEC using handheld equipment or from slope contour survey data. The slope angle quoted reflects the slope immediately around the infrastructure location.

Note (3) The data presented in the Table above is used in the peat stability assessment of the site; see Section 8 of this report.

Note (4) A number of turbine locations listed above were micro-sited following AGEC's site walkover. Peat depths at the micros-sited turbine locations are typically based on additional probe data carried out by McCarthy Keville O'Sullivan.

In addition to probing, in-situ shear vane testing was carried out as part of the ground investigation. Strength testing was carried out at representative locations, in particular at the main infrastructure locations, across the site to provide representative coverage of indicative peat strengths. The results of the vane testing are presented in Figure 6.

The hand vane results indicate undrained shear strengths in the range 5 to 52kPa, with an average value of about 16kPa. The lower bound strengths recorded are typical of deep weak saturated peat and were recorded in the deeper peat deposits in the flatter areas in the south of the site.



Peat strength at sites of known peat failures (assuming undrained loading failure) are generally very low, for example the undrained shear strength at the Derrybrien failure (AGEC, 2004) as derived from essentially back-analysis, though some testing was carried out, was estimated at 2.5kPa.






Figure 6 Undrained Shear Strength (Cu) Profile for Peat with Depth



#### 8 PEAT STABILITY ASSESSMENT

The peat stability assessment analyses the stability of the natural peat slopes for individual parcels across the site including at the turbine locations, along the proposed access roads and along the alternative construction access road (off the N59). The assessment also analyses the stability of the natural peat slopes with a surcharge loading of 10kPa, equivalent to placing 1m of stockpiled peat on the surface of the peat slope.

## 8.1 Methodology for Peat Stability Assessment

Stability of a peat slope is dependent on several factors working in combination. The main factors that influence peat stability are slope angle, shear strength of peat, depth of peat, pore water pressure and loading conditions.

An adverse combination of factors could potentially result in peat sliding. An adverse condition of one of the above-mentioned factors alone is unlikely to result in peat failure. The infinite slope model (Skempton and DeLory, 1957) is used to combine these factors to determine a factor of safety for peat sliding. This model is based on a translational slide, which is a reasonable representation of the dominant mode of movement for peat failures.

To assess the factor of safety for a peat slide, an undrained (short-term stability) and drained (long-term stability) analysis has been undertaken to determine the stability of the peat slopes on site.

- 1. The undrained loading condition applies in the short-term during construction and until construction induced pore water pressures dissipate.
- 2. The drained loading condition applies in the long-term. The condition examines the effect of in particular, the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes.

Undrained shear strength values  $(c_u)$  for peat are used for the total stress analysis. Based on the findings of the Derrybrien failure, undrained loading during construction was found to be the critical failure mechanism.

A drained analysis requires effective cohesion (c') and effective friction angle ( $\emptyset$ ') values for the calculations. These values can be difficult to obtain because of disturbance experienced when sampling peat and the difficulties in interpreting test results due to the excessive strain induced within the peat. To determine suitable drained strength values a review of published information on peat was carried out.

Table 2 shows a summary of the published information on peat together with drained strength values.



**Table 2 List of Effective Cohesion and Friction Angle Values** 

| Reference                     | Cohesion, c' (kPa) | Friction Angle, ø'<br>(degs) | Testing Apparatus/ Comments                                                                                        |
|-------------------------------|--------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Hanrahan et al (1967)         | 5 to 7             | 36 to 43                     | From triaxial apparatus                                                                                            |
| Rowe and Mylleville<br>(1996) | 2.5                | 28                           | From simple shear apparatus                                                                                        |
| Landva (1980)                 | 2 to 4             | 27.1 to 32.5                 | Mainly ring shear apparatus for normal stress greater than 13kPa                                                   |
|                               | 5 to 6             | -                            | At zero normal stress                                                                                              |
| Carling (1986)                | 6.5                | 0                            | -                                                                                                                  |
| Farmall and Habib             | 0                  | 38                           | From ring shear and shear box apparatus. Results are not considered representative.                                |
| Farrell and Hebib<br>(1998)   | 0.61               | 31                           | From direct simple shear (DSS) apparatus.<br>Result considered too low therefore DSS<br>not considered appropriate |
| Rowe, Maclean and             | 1.1                | 26                           | From simple shear apparatus                                                                                        |
| Soderman (1984)               | 3                  | 27                           | From DSS apparatus                                                                                                 |
| McGreever and Farrell         | 6                  | 38                           | From triaxial apparatus using soil with 20% organic content                                                        |
| (1988)                        | 6                  | 31                           | From shear box apparatus using soil with 20% organic content                                                       |
| Hungr and Evans<br>(1985)     | 3.3                | -                            | Back-analysed from failure                                                                                         |
| Dykes and Kirk (2006)         | 3.2                | 30.4                         | Test within acrotelm                                                                                               |
| Dykes and Kirk (2006)         | 4                  | 28.8                         | Test within catotelm                                                                                               |
| Warburton et al (2003)        | 5                  | 23.9                         | Test in basal peat                                                                                                 |
| Warburton et al (2003)        | 8.74               | 21.6                         | Test using fibrous peat                                                                                            |
| Hendry et al (2012)           | 0                  | 31                           | Remoulded test specimen                                                                                            |
| Komatsu et al (2011)          | 8                  | 34                           | Remoulded test specimen                                                                                            |
| Zwanenburg et al (2012)       | 2.3                | 32.3                         | From DSS apparatus                                                                                                 |
| Den Haan & Grognet<br>(2014)  | -                  | 37.4                         | From large DSS apparatus                                                                                           |
| O'Kelly & Zhang (2013)        | 0                  | 28.9 to 30.3                 | Tests carried out on reconstituted, undisturbed and blended peat samples                                           |

From Table 2 the values for c' ranged from 1.1 to 8.74kPa and  $\emptyset$ ' ranged from 21.6 to 43°. The average c' and  $\emptyset$ ' values are 4.5kPa and 30° respectively. Based on the above, it was considered to adopt a conservative approach and to use design values below the averages.

For design the following general drained strength values have been used for the site:

c' = 4kPa

 $\phi' = 25$  degrees



## 8.2 Analysis to Determine Factor of Safety (Deterministic Approach)

The purpose of the analysis was to determine the Factor of Safety (FoS) of the peat slopes using infinite slope analysis. The analysis was carried out at the turbine locations, along the proposed access roads and at various locations across the site.

The FoS provides a direct measure of the degree of stability of the slope. A FoS of less than unity indicates that a slope is unstable, a FoS of greater than unity indicates a stable slope.

The acceptable safe range for FoS typically ranges from 1.3 to 1.4. The previous code of practice for earthworks BS 6031:1981 (BSI, 1981), provided advice on design of earthworks slopes. It stated that for a first time failure with a good standard of site investigation the design FoS should be greater than 1.3.

As a general guide the FoS limits for peat slopes in this report are summarised in table 3.

Factor of Safety (FoS)

Less than 1.0

Between 1.0 and 1.3

Marginally stable (yellow)

1.3 or greater

Acceptable (green)

**Table 3 Factor of Safety Limits for Slopes** 

Eurocode 7 (EC7) (IS EN 1997-1:2005) now serves as the reference document and the basis for design geotechnical engineering works. The design philosophy used in EC7 applies partial factors to soil parameters, actions and resistances. Unlike the traditional approach, EC7 does not provide a direct measure of stability, since global Factors of Safety are not used.

As such, and in order to provide a direct measure of the level of safety on a site, EC7 partial factors have not been used in this stability assessment. The results are given in terms of FoS.

A lower bound undrained shear strength,  $c_u$  for the peat of 6kPa was selected for the assessment based on the  $c_u$  values recorded at the site. It should be noted that a  $c_u$  of 6kPa for the peat is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality the peat generally has a higher undrained strength.

The formula used to determine the factor of safety for the undrained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c_u}{\gamma z \sin \alpha \cos \alpha}$$

Where,

F = Factor of Safety

 $c_u$  = Undrained strength



y = Bulk unit weight of material

z = Depth to failure plane assumed as depth of peat

 $\alpha$  = Slope angle

The formula used to determine the factor of safety for the drained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c' + (\gamma z - \gamma_w h_w) \cos^2 \alpha \tan \phi'}{\gamma z \sin \alpha \cos \alpha}$$

Where.

F = Factor of Safety

c' = Effective cohesion

 $\gamma$  = Bulk unit weight of material

z = Depth to failure plane assumed as depth of peat

 $y_w =$  Unit weight of water

 $h_w$  = Height of water table above failure plane

 $\alpha$  = Slope angle

 $\phi'$  = Effective friction angle

For the drained analysis the level of the water table above the failure surface is required to calculate the factor of safety for the slope. Since the water level in blanket peat can be variable and can be recharged by rainfall, it is not feasible to establish its precise location throughout the site. Therefore a sensitivity analysis using water level ranging between 0 and 100% of the peat depth was conducted, where 0% equates to the peat been completely dry and 100% equates to the peat been fully saturated.

The following general assumptions were used in the analysis of peat slopes at each location:

- (1) Peat depths are based on the maximum peat depth recorded at each location from the walkover survey.
- (2) A lower bound undrained shear strength,  $c_u$  for the peat of 6kPa was selected for the assessment based on the  $c_u$  values recorded at the site. It should be noted that a cu of 6kPa for the peat is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality the peat generally has a higher undrained strength.
- (3) Slope angle on base of sliding assumed to be parallel to ground surface.

For the stability analysis two load conditions were examined, namely

Condition (1): no surcharge loading

Condition (2): surcharge of 10 kPa, equivalent to 1 m of stockpiled peat assumed as a worst case.



## 8.3 Results of Analysis

## 8.3.1 Undrained Analysis for the peat

The results of the undrained analysis for the natural peat slopes are presented in Appendix D and the results of the undrained analysis for the most critical load case (load condition 2) are shown on Figure 7. The undrained analysis for load condition 2 is considered the most critical load case as most peat failures occur in the short term upon loading of the peat surface. The results from the main infrastructure locations are summarised in Table 4.

The calculated FoS for load condition (1) is in excess of 1.30 for each of the 929 no. locations analysed with a range of FoS of 1.57 to in excess of 10, indicating a low risk of peat instability.

The calculated FoS for load condition (2) for the 929 no. locations analysed, only 2 no. FoS points were less than 1.3 where FoS's of 1.26 and 1.28 were calculated. In relation to the marginally low FoS's one of the points is located alongside an existing floating access road which has been in operation for a number of years in the southwest of the site. The marginally low FoS at this location corresponds to an area of deeper peat which is located in a topographical depression and would not be at risk from a peat slide. The other marginally low FoS location also corresponds to an area of deeper peat which is located in topographical depression in the north of the site. The risk within the deeper peat areas relates to a safety risk during construction.

Consequently these areas have an elevated construction risk and are highlighted on the construction buffer zone plan (Figure 5) and will be subject to additional mitigation/control measures (see Appendix C). The remainder of the locations analysed had acceptable FoS's of greater than 1.3, indicating a low risk of peat instability.

Table 4 Factor of Safety Results (undrained condition)

| Turbine<br>No./Waypoint | Easting | Northing | Factor of Safety for Load Condition |               |
|-------------------------|---------|----------|-------------------------------------|---------------|
|                         |         |          | Condition (1)                       | Condition (2) |
| T1                      | 112712  | 235902   | 12.76                               | 6.04          |
| T2                      | 113460  | 235727   | 8.83                                | 4.99          |
| T3                      | 114228  | 235747   | 3.90                                | 1.85          |
| T4                      | 112219  | 235006   | 3.85                                | 2.31          |
| T5                      | 112881  | 235297   | 12.32                               | 5.07          |
| T6                      | 113486  | 235115   | 19.11                               | 9.05          |
| T7                      | 111632  | 234350   | 8.60                                | 5.73          |
| Т8                      | 112295  | 234380   | 12.32                               | 5.07          |
| Т9                      | 112950  | 234335   | 19.11                               | 9.05          |
| T10                     | 113625  | 234507   | 11.47                               | 6.88          |
| T11                     | 114300  | 234700   | 15.64                               | 8.19          |
| T12                     | 111118  | 233704   | 7.19                                | 3.92          |
| T13                     | 111858  | 233787   | 4.65                                | 3.66          |
| T14                     | 112547  | 233828   | 4.92                                | 3.82          |
| T15                     | 113400  | 233770   | 14.34                               | 7.82          |
| T16                     | 111146  | 233160   | 21.49                               | 13.22         |



| Turbine<br>No./Waypoint                   | Easting | Northing | Factor of Safety for Load Condition |               |
|-------------------------------------------|---------|----------|-------------------------------------|---------------|
|                                           |         |          | Condition (1)                       | Condition (2) |
| T17                                       | 112270  | 233254   | 10.12                               | 6.37          |
| T18                                       | 113412  | 233258   | 3.10                                | 1.91          |
| T19                                       | 114099  | 233365   | 8.64                                | 3.84          |
| T20                                       | 111206  | 232296   | 5.06                                | 3.91          |
| T21                                       | 111996  | 232611   | 10.12                               | 6.37          |
| T22                                       | 112637  | 232775   | 6.14                                | 4.53          |
| T23                                       | 110573  | 231801   | 14.34                               | 7.82          |
| T24                                       | 111208  | 231589   | 8.83                                | 4.99          |
| T25                                       | 111778  | 231971   | 4.11                                | 2.78          |
| Substation                                | 113896  | 234938   | 8.71                                | 2.90          |
| Temp. Const.<br>Compound 1                | 114456  | 235280   | 7.65                                | 4.59          |
| Temp. Const.<br>Compound 2                | 112688  | 234471   | 3.46                                | 2.30          |
| Met Mast                                  | 114327  | 234996   | 13.75                               | 9.82          |
| Alt. Const.<br>Access Road <sup>(1)</sup> | -       | -        | 5.01 to 81.86                       | 2.41 to 33.71 |

Note (1) A range of FoS is given for the alternative construction access road as the road is 830m in length.

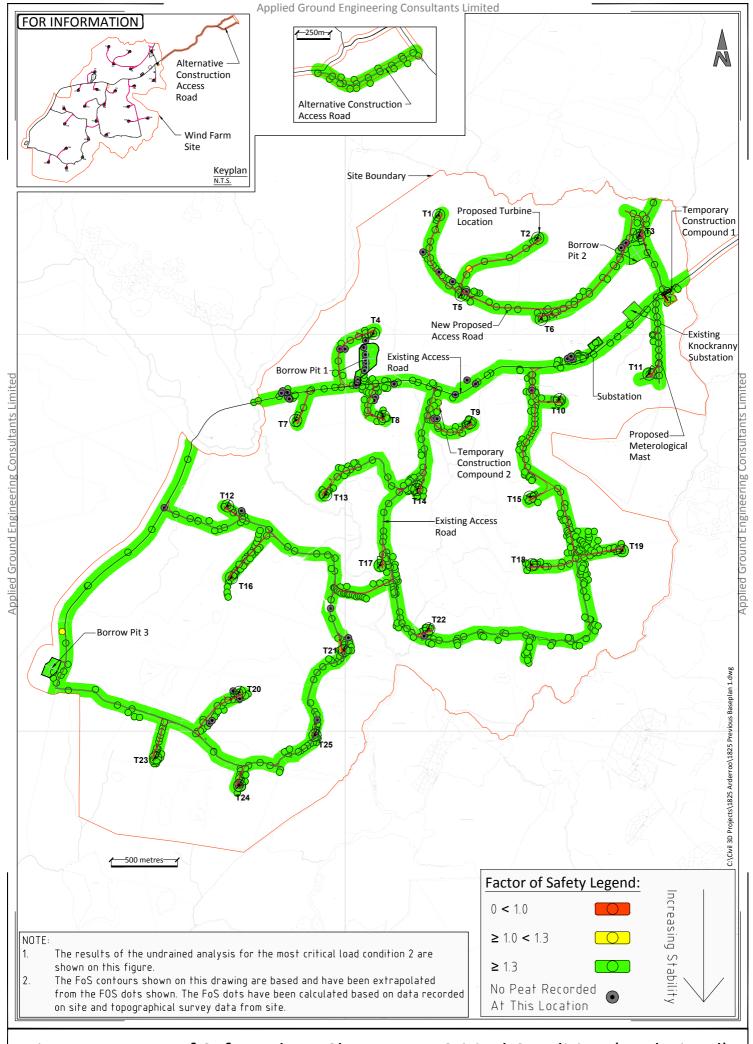



Figure 7 Factor of Safety Plan - Short Term Critical Condition (Undrained)



## 8.3.2 Drained Analysis for the peat

The results of the drained analysis for the peat are presented in Appendix D. The results from the main infrastructure locations are summarised in Table 5. As stated previously, the drained loading condition examines the effect of in particular, rainfall on the existing stability of the natural peat slopes.

The calculated FoS for load condition (1) for the 929 no. locations analysed, only 5 no. FoS points were less than 1.3 where FoS's of between 1.05 and 1.10 were calculated. In relation to the marginally low FoS's four of the points are located alongside existing floating access roads which has been in operation for a number of years in the south of the site. The marginally low FoS's at these locations correspond to areas of deeper peat which are located in topographical depressions and would not be at risk from a peat slide. The other marginally low FoS location also corresponds to an area of deeper peat which is located in topographical depression in the north of the site. The risk within the deeper peat areas relate to a safety risk during construction, which can be mitigated on site using cautious design and construction practices, and not a risk of a peat slide.

Consequently these areas have an elevated construction risk and are highlighted on the construction buffer zone plan (Figure 5) and will be subject to additional mitigation/control measures (see Appendix C). The remainder of the locations analysed had acceptable FoS's of greater than 1.3, indicating a low risk of peat instability.

The calculated FoS for load condition (2) is in excess of 1.30 for each of the 929 no. locations analysed with a range of FoS of 1.81 to in excess of 10, indicating a low risk of peat instability.

**Table 5 Factor of Safety Results (drained condition)** 

| Turbine<br>No./Waypoint | Easting | Northing | Factor of Safety for Load Condition |               |  |
|-------------------------|---------|----------|-------------------------------------|---------------|--|
|                         |         |          | Condition (1)                       | Condition (2) |  |
| T1                      | 112712  | 235902   | 8.50                                | 8.71          |  |
| T2                      | 113460  | 235727   | 5.89                                | 7.20          |  |
| Т3                      | 114228  | 235747   | 2.60                                | 2.62          |  |
| T4                      | 112219  | 235006   | 2.57                                | 3.31          |  |
| T5                      | 112881  | 235297   | 8.21                                | 7.30          |  |
| T6                      | 113486  | 235115   | 12.74                               | 13.39         |  |
| T7                      | 111632  | 234350   | 5.73                                | 8.27          |  |
| T8                      | 112295  | 234380   | 8.21                                | 7.30          |  |
| Т9                      | 112950  | 234335   | 12.74                               | 13.06         |  |
| T10                     | 113625  | 234507   | 7.65                                | 10.42         |  |
| T11                     | 114300  | 234700   | 10.43                               | 12.71         |  |
| T12                     | 111118  | 233704   | 4.79                                | 5.64          |  |
| T13                     | 111858  | 233787   | 3.10                                | 5.28          |  |
| T14                     | 112547  | 233828   | 3.28                                | 5.52          |  |
| T15                     | 113400  | 233770   | 9.56                                | 11.28         |  |
| T16                     | 111146  | 233160   | 14.33                               | 19.09         |  |
| T17                     | 112270  | 233254   | 6.75                                | 9.19          |  |
| T18                     | 113412  | 233258   | 2.07                                | 2.73          |  |
| T19                     | 114099  | 233365   | 5.76                                | 5.52          |  |
| T20                     | 111206  | 232296   | 3.37                                | 5.64          |  |
| T21                     | 111996  | 232611   | 6.75                                | 9.19          |  |



| Turbine<br>No./Waypoint     | Easting | Northing | Factor of Safety for Load Condition |               |
|-----------------------------|---------|----------|-------------------------------------|---------------|
|                             |         |          | Condition (1)                       | Condition (2) |
| T22                         | 112637  | 232775   | 4.10                                | 6.53          |
| T23                         | 110573  | 231801   | 9.56                                | 11.28         |
| T24                         | 111208  | 231589   | 5.89                                | 7.20          |
| T25                         | 111778  | 231971   | 2.74                                | 4.01          |
| Substation                  | 113896  | 234938   | 5.80                                | 4.15          |
| Temp. Const.<br>Compound 1  | 114456  | 235280   | 5.10                                | 6.62          |
| Temp. Const.<br>Compound 2  | 112688  | 234471   | 2.30                                | 3.31          |
| Met Mast                    | 114327  | 234996   | 9.17                                | 14.18         |
| Alt. Const. Access Road (1) | -       | -        | 3.34 to 54.57                       | 3.42 to 48.66 |

Note (1) A range of FoS is given for the alternative construction access road as the road is 830m in length.



### 9 RISK ASSESSMENT

A risk assessment was carried out for the main infrastructure elements at the proposed wind farm development. This approach follows the guidelines for geotechnical risk management as given in Clayton (2001), as referenced in PHRAG, and takes into account the approach of MacCulloch (2005).

The risk assessment uses the results of the stability analysis (deterministic approach) in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability to assess the risk for each infrastructure element.

For each infrastructure element, a risk rating (product of probability and impact) is calculated and rated as shown in Table 6. Where an infrastructure element is rated 'Substantial' or 'Unacceptable', control measures are required to reduce the risk to at least a 'Tolerable' risk rating. Where an infrastructure element is rated 'Trivial' or 'Tolerable', only routine control measures are required.

### **Table 6 Risk Rating Legend**

| 10 to 20 | Unacceptable: re-location or significant control measures required |
|----------|--------------------------------------------------------------------|
| 5 to 9   | Substantial: notable control measures required                     |
| 3 to 4   | Tolerable: only routine control measures required                  |
| 1 to 2   | Trivial: none or only routine control measures required            |

A full methodology for the risk assessment is given in Appendix E.

### 9.1 Summary of Risk Assessment Results

The results of the risk assessment for potential peat failure at the main infrastructure elements is presented as a Geotechnical Risk Register in Appendix C and summarised in Table 7.

The risk rating for each infrastructure element at the Ardderroo wind farm is designated trivial and tolerable following some mitigation/control measures being implemented. Sections of access roads to the nearest infrastructure element should be subject to the same mitigation/control measures that apply to the nearest infrastructure element.

Details of the required mitigation/control measures can be found in the Geotechnical Risk Register for each infrastructure element (Appendix C).



## **Table 7 Summary of Geotechnical Risk Register**

| Infrastructure                    | Pre-Control<br>Measure<br>Implementation<br>Risk Rating | Pre-Control<br>Measure<br>Implementation<br>Risk Rating<br>Category | Notable<br>Control<br>Measures<br>Required | Post-Control<br>Measure<br>Implementation<br>Risk Rating | Post-Control Measure Implementation Risk Rating Category |
|-----------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Turbine T1                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T2                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T3                        | Tolerable                                               | 3 to 4                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T4                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T5                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T6                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T7                        | Tolerable                                               | 3 to 4                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T8                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T9                        | Substantial                                             | 5 to 9                                                              | Yes                                        | Tolerable                                                | 3 to 4                                                   |
| Turbine T10                       | Substantial                                             | 5 to 9                                                              | Yes                                        | Tolerable                                                | 3 to 4                                                   |
| Turbine T11                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T12                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T13                       | Substantial                                             | 5 to 9                                                              | Yes                                        | Trivial                                                  | 1 to 2                                                   |
| Turbine T14                       | Tolerable                                               | 3 to 4                                                              | Yes                                        | Trivial                                                  | 1 to 2                                                   |
| Turbine T15                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T16                       | Tolerable                                               | 3 to 4                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T17                       | Substantial                                             | 5 to 9                                                              | Yes                                        | Tolerable                                                | 3 to 4                                                   |
| Turbine T18                       | Tolerable                                               | 3 to 4                                                              | No                                         | Tolerable                                                | 3 to 4                                                   |
| Turbine T19                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T20                       | Tolerable                                               | 3 to 4                                                              | Yes                                        | Trivial                                                  | 1 to 2                                                   |
| Turbine T21                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T22                       | Substantial                                             | 5 to 9                                                              | Yes                                        | Trivial                                                  | 1 to 2                                                   |
| Turbine T23                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T24                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Turbine T25                       | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Met Mast                          | Substantial                                             | 5 to 9                                                              | Yes                                        | Tolerable                                                | 3 to 4                                                   |
| Substation                        | Trivial                                                 | 1 to 2                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Temporary Construction Compound 1 | Tolerable                                               | 3 to 4                                                              | No                                         | Trivial                                                  | 1 to 2                                                   |
| Temporary Construction Compound 2 | Tolerable                                               | 3 to 4                                                              | No                                         | Tolerable                                                | 3 to 4                                                   |



### 10 SUMMARY AND RECOMMENDATIONS

### 10.1 Summary

The following summary is given.

AGEC was engaged by McCarthy Keville O'Sullivan to undertake an assessment of the proposed wind farm site with respect to peat stability.

The findings of the peat assessment, which involved analysis of over 920 locations, showed that the site has an acceptable margin of safety and is suitable for the proposed wind farm development. The findings include recommendations and control measures for construction work in peat lands to ensure that all works adhere to an acceptable standard of safety.

The northern part of the site (turbines T1 to T6) is located on elevated ground that is situated to the east of Knocknalee Hill and south of Buffy Lough. The southern part of the site (turbines T7 to T25) comprises low-lying undulating generally flat terrain. Most of the proposed site is covered by blanket bog that has been planted with conifer plantations.

Peat depths recorded during the site walkovers from over 1,700 no. probes carried out by AGEC and McCarthy Keville O'Sullivan between 2013 and 2018 range from 0 to 7.2m with an average of 1.7m. . 95 percent of the peat depth readings are 4m or less and all except 2 no. of the 1,700 no. probes are 6m or less. The deepest peat was recorded in the south of the site in localised depressions where the topography is typically flatter and where some 16.8km of existing access roads are in place. Based on anecdotal information some of the existing access roads have been in operation for over 50 years. In addition, at the location of the deeper peat deposits on site either existing or proposed floating access roads will be constructed hence no excavation works will take place within the deeper peat deposits.

An analysis of peat sliding was carried out at the main infrastructure locations across site for both the undrained and drained conditions. The purpose of the analysis was to determine the Factor of Safety (FoS) of the peat slopes.

An undrained analysis was carried out, which applies in the short-term during construction. For the undrained condition, the calculated FoS for load conditions (1) and (2) for the 929 no. locations analysed, shows that at 927 no. locations an acceptable FoS of greater than 1.3 was calculated, indicating a low risk of peat instability.

At 2 no. localised locations the undrained analysis showed a FoS of less than 1.3. These 2 no. locations correspond to areas of deeper peat within topographical depressions, and as such would not be at risk from a peat slide. The undrained analysis is considered the most critical condition for the peat slopes.

A drained analysis was carried out, which examines the effect of in particular, rainfall on the existing stability of the natural peat slopes on site. For the drained condition, the calculated FoS for load conditions (1) and (2) for the 929 no. locations analysed, shows that at 924 no. locations an acceptable FoS of greater than 1.3 was calculated, indicating a low risk of peat instability.



At 5 no. localised locations the drained analysis showed a FoS of less than 1.3. These 5 no. locations correspond to areas of deeper peat within topographical depressions, and as such would not be at risk from a peat slide. The risk within the deeper peat areas relates to a safety risk during construction which can be mitigated using cautious design and construction practices. All areas with low FoS's are highlighted on the construction buffer zone plan and will be subject to additional mitigation/control measures (see Appendix C).

The risk assessment at each infrastructure location identified a number of mitigation/control measures to reduce the potential risk of peat failure. Sections of access roads to the nearest infrastructure element should be subject to the same mitigation/control measures that apply to the nearest infrastructure element. See Appendix C for details of the required mitigation/control measures for each infrastructure element.

In summary the findings of the peat assessment, which involved analysis of over 920 locations, showed that the proposed Ardderroo wind farm site has an acceptable margin of safety and is suitable for the proposed wind farm development. The findings include recommendations and control measures for construction work in peat lands to ensure that all works adhere to an acceptable standard of safety.

### 10.2 Recommendations

The following general recommendations are given.

Notwithstanding that the site has an acceptable margin of safety a number of mitigation/control measures are given to ensure that all works adhere to an acceptable standard of safety for work in peatlands. Mitigation/control measures identified for each of the infrastructure elements in the risk assessment should be taken into account and implemented throughout design and construction works (Appendix C).

Recommendations and guidelines given in AGEC's report 'Peat & Spoil Management Plan for Ardderroo Wind Farm, County Galway' (AGEC 2018) should be taken into consideration during the design and construction stage of the wind farm development.

A construction buffer zone plan has been produced for the site (Figure 5). This Figure shows areas which have an elevated or higher construction risk due to the terrain and features encountered during the site reconnaissance and are areas where additional mitigation/control measures will be required (Appendix C).

To minimise the risk of construction activity causing potential peat instability it is recommended that the Construction Method Statements (CMSs) for the project take into account, but not be limited, to the recommendations above. This will ensure that best practice guidance regarding the management of peat stability will be inherent in the construction phase.



### 11 REFERENCES

Applied Ground Engineering Consultants (AGEC) (2004). Derrybrien Wind Farm Final Report on Landslide of October 2003.

Applied Ground Engineering Consultants (AGEC) (2018). Peat & Spoil Management Plan for Ardderroo Wind Farm, County Galway (rev 0). October 2018.

British Standards Institute (1981). BS 6031:1981 Code of practice for earthworks.

Bromhead, E.N. (1986). The Stability of Slopes.

Carling, P.A. (1986). Peat slides in Teesdale and Weardale, northern Pennines, July 1983: Description and failure mechanisms. Earth Surface Processes and Landforms, 11.

Clayton, C.R.I. (2001). Managing Geotechnical Risk. Institution of Civil Engineers, London.

Den Haan EJ and Grognet M (2014). A large direct simple shear device for the testing of peat at low stresses. Géotechnique Letters 4(4): 283–288, http://dx.doi.org/10.1680/geolett. 14.00033.

Dykes, A.P. and Kirk, K.J. (2006). Slope instability and mass movements in peat deposits. In Martini, I.P., Martinez Cortizas, A. and Chesworth, W. (Eds.) Peatlands: Evolution and Records of Environmental and Climatic Changes. Elsevier, Amsterdam.

Farrell, E.R. & Hebib, S. (1998). The determination of the geotechnical parameters of organic soils. Proceedings of International Symposium on problematic soils, IS-TOHOKU 98, Sendai, Japan.

Geological Survey of Ireland (2004). Sheet 14; Geology of Galway Bay.

Geological Survey of Ireland (2006). Landslides in Ireland. Geological Survey of Ireland - Irish Landslides Group. July 2006.

Geological Survey of Ireland (2017). Online dataset public viewer http://spatial. dcenr.gov.ie/imf/imf.jsp?site=GSI\_Simple February 2017.

Hanrahan, E.T., Dunne, J.M. and Sodha, V.G. (1967). Shear strength of peat. Proc. Geot. Conf., Oslo, Vol. 1.

Hendry MT, Sharma JS, Martin CD and Barbour SL (2012). Effect of fibre content and structure on anisotropic elastic stiffness and shear strength of peat. Canadian Geotechnical Journal 49(4): 403–415, http://dx.doi.org/10.1139/t2012-003.

Hungr, O. and Evans, S.G. (1985). An example of a peat flow near Prince Rupert, British Columbia. Canadian Geotechnical Journal, 22.

Komatsu J, Oikawa H, Tsushima M and Igarashi M (2011). Ring shear test on peat. In Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, Hawaii, USA (Chung JS, Hong SY, Langen I and Prinsenberg SJ (eds)). International Society of Offshore and Polar Engineers, Cupertino, CA, USA, vol. 2, pp. 393–396.

Landva, A.O. (1980). Vane testing in peat. Canadian Geotechnical Journal, 17(1).

MacCulloch, F. (2005). Guidelines for the Risk Management of Peat Slips on the Construction of Low Volume/Low Cost Roads over Peat. RoadEx 11 Northern Periphery.



McCarthy Keville O'Sullivan (2013). Excel document titled 'Peat Depths for AGEC - 130117 - 2013.10.21 (File ref 1340 004)', 2013.

McGeever J. and Farrell E. (1988). The shear strength of an organic silt. Proc. 2<sup>nd</sup> Baltic Conf., 1, Tallin USSR.

O'Kelly BC and Zhang L (2013). Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal 36(3): 310–321, http://dx.doi.org/10.1520/ GTJ20120053.

Rowe, R.K. & Mylleville, B.L.J (1996). A geogrid reinforced embankment on peat over organic silt; a case history. Can. Geotech. J. 33 (1), 106 – 122.

Rowe, R.K., MacLean, M.D., Soderman, K.L. (1984). Analysis of a geotextile reinforced embankment constructed on peat. Can. Geotech. J. 21 (3), 563 – 576.

Scottish Executive, 2007. Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments.

Skempton, A. W. and DeLory, F. A. (1957). Stability of natural slopes in London Clay. Proc 4th Int. Conf. On Soil Mechanics and Foundation Engineering, Rotterdam, vol. 2, pp.72-78.

Tobin Consulting Engineers (2018). Proposed Wind Farm – Construction and Maintenance Access Road. Planning Stage Design Statement. Revision D02. October 2018.

Warburton, J., Higgett, D. and Mills, A. (2003). Anatomy of a Pennine Peat Slide. Earth Surface Processes and Landforms.

Warburton, J., Holden, J. and Mills, A. J. (2003). Hydrological controls of surficial mass movements in peat. Earth-Science Reviews 67 (2004), pp. 139-156.

Zwanenburg C, Den Haan EJ, Kruse GAM and Koelewijn AR (2012). Failure of a trial embankment on peat in Booneschans, the Netherlands. Géotechnique 62(6): 479–490, http://dx.doi.org/10.1680/geot.9.P.094.



# APPENDIX A PHOTOS FROM SITE VISIT





Photo 1 Overview of site conditions (northern part of site)



Photo 2 Overview of site conditions (southern part of site)





Photo 3 Example of an existing access road on site



Photo 4 Example of an existing floating access road on site





Photo 5 Example of make-up of an existing floating access road on site



Photo 6 Example of ground conditions on site





Photo 7 Example of ground conditions on site



Photo 8 Overview of site conditions along alternative construction access road (off the N59)





Photo 9 Overview of site conditions along alternative construction access road (off the N59)



Photo 10 Example of a rock outcrop along alternative construction access road (off the N59)



# APPENDIX B GROUND INVESTIGATION DATA – TRIAL PIT LOGS & PHOTOGRAPHS



AGEC Ltd
The Grainstore
Singletons Lane
Bagenalstown
Co. Carlow
R21 XA66 Ireland

Tel: +353-59-9723800 Email: info@agec.ie Web: www.agec.ie

# Trial Pit Log

TrialPit No **TPA** 

Sheet 1 of 1

|           |                           | 11217010011010110 |   |  |        |                 |               |           |               | 0.1000 1 01 1  |
|-----------|---------------------------|-------------------|---|--|--------|-----------------|---------------|-----------|---------------|----------------|
| Project   | Arddorro                  | o Wind Farm       |   |  | Projec | t No.           | Coords (E,N): | 113771.00 | 233321.00     | Date           |
| Name:     | Arduerro                  | o willa Fallii    |   |  | 1666   |                 | Level:        |           |               | 16/11/2016     |
| Location: | Proposed                  | Borrow Areas      |   |  |        | Dimensions (m): |               |           | Scale<br>1:20 |                |
| Client:   | McCarthy                  | Keville O'Sulliva | n |  |        |                 | Depth<br>2.60 |           |               | Logged<br>G.K. |
|           | Samples & In Situ Testing |                   |   |  |        |                 |               |           |               |                |

| Stratum Description   Type   Results/Sample Ref   Type   Type   Results/Sample Ref   Type   Results/Sample Ref   Type     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Firm and spongy brown / black fibrous and amorphous PEAT    Mark   Mark  |
| ## PEAT    Sult, S |
| 1.20  Medium dense grey / green slightly silty gravelly SAND with frequent cobbles and occasional boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.59 2.60  Granite bedrock encountered End of Pit at 2.600m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Remarks:

- (1) Excavation terminated at 2.6m bgl(2) Trial pit noted as marginally stable.(3) No groundwater encountered, surface water only noted.

Plant Used:



AGEC Ltd
The Grainstore
Singletons Lane
Bagenalstown
Co. Carlow
R21 XA66 Ireland

Tel: +353-59-9723800 Email: info@agec.ie Web: www.agec.ie

# Trial Pit Log

TrialPit No **TPB** 

|          |           | R21 XA66 Ireland            |       |        |       |               |           |      | Sheet 1 of 1 |
|----------|-----------|-----------------------------|-------|--------|-------|---------------|-----------|------|--------------|
| Project  | Arddorro  | o Wind Farm                 |       | Projec | t No. | Coords (E,N): | 113752.00 | Date |              |
| Name:    | Aruderro  | o willa Fallii              |       | 1666   |       | Level:        |           |      | 16/11/2016   |
| Location | Proposed  | Porrow Areas                |       |        |       | Dimensions    |           |      | Scale        |
| Location | Floposeu  | Proposed Borrow Areas       |       |        |       | (m):          |           |      | 1:20         |
| Client:  | McCarthy  | McCarthy Keville O'Sullivan |       |        |       | Depth         |           |      | Logged       |
|          | Widdarary |                             |       |        | 3.50  |               |           | G.K. |              |
| ke fe    | Sample    | es & In Situ Testing        | Depth | Level  | l     |               | 01 1 5    | e.   |              |

| že e            | Samp  | oles & In S | Situ Testing       | Depth | Level |                               |                                                             |     |
|-----------------|-------|-------------|--------------------|-------|-------|-------------------------------|-------------------------------------------------------------|-----|
| Water<br>Strike | Depth | Туре        | Results/Sample Ref | (m)   | (m)   | Legend                        | Stratum Description                                         |     |
|                 |       |             |                    |       |       | مادد مادد ماد<br>د مادد مادد  | Spongy brown / black amorphous PEAT                         | _   |
|                 |       |             |                    |       |       | હોદ હોદ હો                    |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             |     |
|                 |       |             |                    |       |       | s alta alta                   |                                                             | _   |
|                 |       |             |                    |       |       | હોદ હોદ હો                    |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             |     |
|                 |       |             |                    |       |       | sus sus su<br>s alta alta     |                                                             | _   |
|                 |       |             |                    |       |       | હોદ હોદ હો                    |                                                             | _   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             |     |
|                 |       |             |                    |       |       | مالد مالد م                   |                                                             | _   |
|                 |       |             |                    |       |       | مالاد مالاد مالا              |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             | -   |
|                 |       |             |                    |       |       | مالد مالد م                   |                                                             |     |
|                 |       |             |                    |       |       | عادہ عادہ عاد<br>د عادہ عادہ  |                                                             | -   |
|                 |       |             |                    |       |       | ه عسد عسد<br>علاد علاد علا    |                                                             |     |
|                 |       |             |                    |       |       | مالد مالد م                   |                                                             | 1 - |
|                 |       |             |                    |       |       | ماند ماند ماند<br>د ماند ماند |                                                             | -   |
|                 |       |             |                    |       |       | عائد عائد عاد                 |                                                             | -   |
|                 |       |             |                    |       |       | s als als                     |                                                             |     |
|                 |       |             |                    |       |       | عادہ عادہ عاد<br>د عادہ عادہ  |                                                             | _   |
|                 |       |             |                    |       |       | عائد عائد عاد                 |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             |     |
|                 |       |             |                    |       |       | s alta alta                   |                                                             | _   |
|                 |       |             |                    |       |       | હોદ હોદ હો                    |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             | -   |
|                 |       |             |                    |       |       | مالد مالد م                   |                                                             |     |
|                 |       |             |                    |       |       | अदि अदि अदि                   |                                                             | _   |
|                 |       |             |                    |       |       | د. عاد، عاد،<br>عاد، عاد، عاد |                                                             | -   |
|                 |       |             |                    |       |       | مالد مالد م                   |                                                             |     |
|                 |       |             |                    |       |       | ماند ماند ماند<br>د ماند ماند |                                                             | -   |
|                 |       |             |                    |       |       | عائد عائد عاد                 |                                                             | 2 — |
|                 |       |             |                    |       |       | رمادر مادر                    |                                                             |     |
|                 |       |             |                    |       |       | ماند ماند ماند<br>د ماند ماند |                                                             | -   |
|                 |       |             |                    |       |       | હોદ હોદ હો                    |                                                             | _   |
|                 |       |             |                    |       |       | د ماد ماد<br>با با با         |                                                             |     |
|                 |       |             |                    |       |       | ماند ماند ماند<br>د ماند ماند |                                                             | _   |
|                 |       |             |                    |       |       | હોદ હોદ હો                    |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             |     |
|                 |       |             |                    |       |       | s als als                     |                                                             | _   |
|                 |       |             |                    |       |       | ક્ષાંદ ક્ષાંદ ક્ષાંદ          |                                                             | -   |
|                 |       |             |                    |       |       | د عاد عاد<br>عاد عاد عاد      |                                                             | -   |
|                 |       |             |                    |       |       | مالد مالد م                   |                                                             |     |
|                 |       |             |                    | 2.80  |       | 316 316 31                    | Medium dense grey / green slightly silty gravelly SAND with | -   |
|                 |       |             |                    |       |       | x × x ;                       | occasional cobbles and boulders                             |     |
|                 |       |             |                    |       |       | ×. ×. ,                       |                                                             |     |
|                 |       |             |                    |       |       | [.×.^.×                       |                                                             | з — |
|                 |       |             |                    |       |       | î× × 💉                        |                                                             | -   |
|                 |       |             |                    |       |       | $\times$ $\times$ $\times$    |                                                             | ]   |
|                 |       |             |                    |       |       | ×^×                           |                                                             | -   |
|                 |       |             |                    |       |       | $[\times, \times \times]$     |                                                             | -   |
|                 |       |             |                    |       |       | ××××                          |                                                             |     |
|                 |       |             |                    |       |       | .^×. ×.                       |                                                             | -   |
|                 |       |             |                    | 2.50  |       | $\times_{\sim} \times$        |                                                             | -   |
|                 |       |             |                    | 3.50  |       |                               | End of Pit at 3.500m                                        |     |
|                 |       | <u> </u>    |                    |       |       |                               |                                                             | L   |

Remarks:

- (1) Bedrock not encountered during excavation of trial pit. Angular cobbles and boulders were noted at the base of excavation hence bedrock is likely to be close to base of trial pit.
- (2) Trial pit noted as marginally stable.
  (3) No groundwater encountered, surface water only noted.
  (4) Difficult to excavate deeper with 13tN excavator.

Plant Used:



AGEC Ltd
The Grainstore
Singletons Lane
Bagenalstown
Co. Carlow

Tel: +353-59-9723800 Email: info@agec.ie Web: www.agec.ie

# Trial Pit Log

TrialPit No **TPC** 

| `         | . Briegin B geneartain | R21        | XA66 Ireland       |                      |        |                                         |                                                    |                   | Sheet 1 o      | of 1 |
|-----------|------------------------|------------|--------------------|----------------------|--------|-----------------------------------------|----------------------------------------------------|-------------------|----------------|------|
| Project   | Ardderro               | oo Win     | d Farm             |                      | Projec | t No.                                   | Coords (E,N): 113                                  | 3702.00 233446.00 | Date           |      |
| Name:     | Aiddeire               | ,          | a i aiiii          |                      | 1666   |                                         | Level:                                             |                   | 16/11/20       | 16   |
| Location: | Proposed               | d Borro    | w Areas            |                      |        |                                         | Dimensions                                         |                   | Scale          |      |
|           | 1.100000               |            |                    |                      |        |                                         | (m):                                               |                   | 1:20           |      |
| Client:   | McCarthy               | y Kevill   | e O'Sullivan       |                      |        |                                         | Depth<br>1.90                                      |                   | Logged<br>G.K. | i    |
| e e       | Samp                   | les & In S | Situ Testing       | Depth                | Level  |                                         |                                                    | <u>'</u>          |                |      |
| Water     | Depth                  | Туре       | Results/Sample Ref | (m)                  | (m)    | Legend                                  | Stratu                                             | um Description    |                |      |
|           |                        | ,          |                    | 1.40<br>1.89<br>1.90 |        | alle alle alle alle alle alle alle alle | Medium dense grey / gree occasional cobbles and bo |                   |                | 1    |

Remarks:

- (1) Excavation terminated at 1.9m bgl.(2) Trial pit noted as stable.(3) No groundwater encountered

Plant Used:

3



AGEC Ltd
The Grainstore
Singletons Lane
Bagenalstown
Co. Carlow
R21 XA66 Ireland

Tel: +353-59-9723800 Email: info@agec.ie Web: www.agec.ie

# Trial Pit Log

TrialPit No **TPD** 

|           |                                | NZ I XA00 II elaliu |  |  |        |       |               |           |           | Sheet 1 of 1 |
|-----------|--------------------------------|---------------------|--|--|--------|-------|---------------|-----------|-----------|--------------|
| Project   | Arddorro                       | Wind Farm           |  |  | Projec | t No. | Coords (E,N): | 113779.00 | 233183.00 | Date         |
| Name:     | Araderro                       | o willa Fallii      |  |  | 1666   |       | Level:        |           |           | 16/11/2016   |
| Location: | Proposed Parrow Areas          |                     |  |  |        |       | Dimensions    |           |           | Scale        |
| Location. | Proposed Borrow Areas          |                     |  |  |        |       | (m):          |           |           | 1:20         |
| Client:   | McCarthy Keville O'Sullivan    |                     |  |  |        |       | Depth         |           |           | Logged       |
| Ollont.   | WicCartify Reville O Sullivair |                     |  |  |        |       | 2.50          |           |           | G.K.         |
|           |                                |                     |  |  |        |       |               |           |           |              |

| Client: | McCarti                                                  | iy Kevili   | e O'Sullivan |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.50                                                               |                                       | G.K.   |
|---------|----------------------------------------------------------|-------------|--------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|--------|
| Water   | Sam                                                      | ples & In S | Situ Testing | Depth          | Level  | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    | cription                              |        |
| Stri    | Samples & In Situ Testing  Depth Type Results/Sample Ref |             | (m)          | (m) (m) Legend | Legena | Stratum Description  Firm and spongy brown / black fibrous and amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                       |        |
|         |                                                          |             |              |                |        | salle salle a salle salle alle salle alle salle alle salle s | Firm and spongy brown / black fil<br>PEAT                          | brous and amorphous                   |        |
|         |                                                          |             |              | 0.90           |        | alte alte alte e alte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Medium dense grey / green sligh<br>frequent cobbles and occasional | tly silty gravelly SAND v<br>boulders | vith 1 |
|         |                                                          |             |              | 2.49<br>2.50   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Granite bedrock encountered End of Pit at 2                        | 2.500m                                |        |
|         |                                                          |             |              |                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                       | 3      |

Remarks:

- (1) Excavation terminated at 2.5m bgl.(2) Trial pit noted as stable.(3) No groundwater encountered, surface water only noted.

Plant Used:

|                 |                                         |        |                        |                 |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trialpit N       | 10        |
|-----------------|-----------------------------------------|--------|------------------------|-----------------|--------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| ag              | geotechnical<br>engineering consultants |        |                        |                 |              | Tri                                     | ial Pit Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TP1              |           |
|                 |                                         |        |                        |                 |              |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sheet 1 c        | of 1      |
| Projec<br>Name  |                                         | Wind F | arm                    | Project<br>1538 | t No.        |                                         | Co-ords: 109835.00 - 232363.00<br>Level:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date<br>10/07/20 | 15        |
| Locati          | on: Borrow A                            | rea No | 3                      | -               |              |                                         | Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scale            |           |
|                 |                                         |        |                        |                 |              |                                         | (m):<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:25<br>Logged   | ٠ <u></u> |
| Client:         |                                         |        | O'Sullivan             |                 |              | 1                                       | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB               |           |
| Water<br>Strike | Sample<br>Depth                         | Type   | n Situ Testing Results | Depth<br>(m)    | Level<br>(m) | Legend                                  | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |           |
| S 0             | Берш                                    | Туре   | Nesulis                | 2.20<br>2.20    |              | Alfe Alfe Alfe Alfe Alfe Alfe Alfe Alfe | Substitution of the substi | asional          | 2         |
| Rema<br>Stabili |                                         |        |                        |                 |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AG               | 5 -<br>S  |

|                   |                                         |        |                        |                 |              |                                         |                                          | Trialpit N       | Vo       |
|-------------------|-----------------------------------------|--------|------------------------|-----------------|--------------|-----------------------------------------|------------------------------------------|------------------|----------|
| ag                | geotechnical<br>engineering consultants |        |                        |                 |              | Tr                                      | ial Pit Log                              | TP2              |          |
|                   |                                         |        |                        |                 |              |                                         |                                          | Sheet 1 c        | of 1     |
| Project<br>Name:  | t Arderroo                              | Wind F | arm                    | Project<br>1538 | t No.        |                                         | Co-ords: 112099.00 - 234636.00<br>Level: | Date<br>10/07/20 | )15      |
| Location          | on: Borrow A                            | rea No | 1                      | •               |              |                                         | Dimensions                               | Scale            |          |
|                   |                                         |        |                        |                 |              |                                         | (m):<br>Depth                            | 1:25<br>Logged   |          |
| Client:           |                                         |        | e O'Sullivan           |                 | 1            |                                         | 2.20                                     | SB               |          |
| Water<br>Strike   | Sample<br>Depth                         | Type   | n Situ Testing Results | Depth<br>(m)    | Level<br>(m) | Legend                                  | Stratum Description                      |                  |          |
|                   |                                         |        |                        | 2.20<br>2.20    |              | alic alic alic alic alic alic alic alic | cobbles                                  | sional           | 2        |
| Remar<br>Stabilit |                                         |        |                        |                 |              |                                         |                                          | AG               | 5 -<br>S |

|                     |                                       |         |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | Trialpit N     | No    |
|---------------------|---------------------------------------|---------|--------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|-------|
|                     | eotechnical<br>ngineering consultants |         |              |              |              | Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ial Pit Log                                 | TP3            | }     |
| -                   |                                       |         |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O                                           | Sheet 1 c      | of 1  |
| Project             | Arderroo                              | Wind F  | arm          | Projec       | t No.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Co-ords: 112225.00 - 234646.00              | Date           |       |
| Name:               | 711401100                             | vviiidi |              | 1538         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level:                                      | 10/07/20       |       |
| Locatio             | n: Borrow A                           | Area No | .1           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimensions (m):                             | Scale          |       |
| 01:                 | M - O                                 | 17      | 010-415      |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth                                       | 1:25<br>Logged | t     |
| Client:             |                                       |         | e O'Sullivan |              |              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.40                                        | SB             |       |
| Water<br>Strike     |                                       |         |              | Depth<br>(m) | Level<br>(m) | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stratum Description                         |                |       |
|                     | Depth                                 | Type    | Results      | 3.40 3.40    |              | Alfe. | Sold Side Side Side Side Side Side Side Sid |                | 1 2 3 |
| Remark<br>Stability |                                       |         |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | AG             | S     |

|                 |                                        |                                       |                        |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | Trialpit      | No    |
|-----------------|----------------------------------------|---------------------------------------|------------------------|----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|-------|
| ag              | eotechnical<br>Ingineering consultants |                                       |                        |                      |              | Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ial Pit Log                                                   | TP4           | ŀ     |
|                 |                                        |                                       |                        |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | Sheet 1       | of 1  |
| Project         | Arderroo                               | Wind F                                | -arm                   | Projec               | t No.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Co-ords: 114304.00 - 235652.00                                | Date          |       |
| Name:           | 7,11401100                             | · · · · · · · · · · · · · · · · · · · |                        | 1538                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level:                                                        | 10/07/20      |       |
| Locatio         | n: Borrow A                            | rea No                                | .2                     |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimensions (m):                                               | Scale         |       |
|                 |                                        |                                       |                        |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth                                                         | 1:25<br>Logge |       |
| Client:         |                                        |                                       | e O'Sullivan           | 1                    |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.40                                                          | SB            |       |
| Water<br>Strike | Sample<br>Depth                        | s and I                               | n Situ Testing Results | Depth (m)            | Level<br>(m) | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stratum Description                                           |               |       |
| Remark          | KS:                                    |                                       |                        | 3.00<br>3.40<br>3.40 |              | aller | Soft dark brown spongy amorphous PEAT with occasional cobbles |               | 1 2 3 |
| Stability       |                                        |                                       |                        |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | AC            | S     |





Photo 1 Trial Pit A



Photo 2 Trial Pit B





Photo 3 Trial Pit C



Photo 4 Trial Pit D





Photo 5 Trial Pit 1



Photo 6 Trial Pit 2





Photo 7 Trial Pit 3



Photo 8 Trial Pit 4



# APPENDIX C GEOTECHNICAL RISK REGISTER

| Location:                             | Turbine T1    |  |  |
|---------------------------------------|---------------|--|--|
|                                       |               |  |  |
| Grid Reference (Eastings, Northings): | 112712 235902 |  |  |
| Distance to Watercourse (m)           | > 150         |  |  |
| Min & Max Measured Peat Depth (m):    | 0.3 to 0.9    |  |  |
| Control Required:                     | No            |  |  |

|      |                                                                                    |      | Control Mea | sure Imple | ementation     |                     |                                                                       | Post-Control Measure Implementation |        |      |                |   |                |
|------|------------------------------------------------------------------------------------|------|-------------|------------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|---|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob | Impact      | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |   |                |
| 1    | FOS = 6.04 (u), 8.50 (d)                                                           | 1    | 1           | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |   |                |
| 2    | Evidence of sub peat water flow                                                    | 1    | 1           | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |   |                |
| 3    | Evidence of surface water flow                                                     | 1    | 1           | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |   |                |
| 4    | Evidence of previous failures/slips                                                | 0    | 1           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |   |                |
| 5    | Type of vegetation                                                                 | 2    | 1           | 2          | Trival         | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |   |                |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 1           | 1          | Trival         | No                  | See Below                                                             | 1                                   | 1      | 1    | Trival         |   |                |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 1           | 0          | Not Applicable | No                  |                                                                       |                                     |        | 0    | 1              | 0 | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 1           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |   |                |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 1           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |   |                |
| 10   | Evidence of bog pools                                                              | 0    | 1           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |   |                |
| 11   | Other                                                                              | 0    | 1           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |   |                |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T1</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             |   | Turbi      | ine T2 |  |  |
|---------------------------------------|---|------------|--------|--|--|
|                                       |   |            |        |  |  |
| Grid Reference (Eastings, Northings): | L | 113460     | 235727 |  |  |
| Distance to Watercourse (m)           |   | > 150      |        |  |  |
| Min & Max Measured Peat Depth (m):    |   | 1.0 to 1.3 |        |  |  |
| Control Required:                     |   | N          | lo     |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     | Post-Control Measure Imple                                            |      |        |      |                |   |   |   |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------|------|----------------|---|---|---|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating    |   |   |   |                |
| 1    | FOS = 4.99 (u), 5.89 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |   |   |   |                |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |   |   |   |                |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |   |   |   |                |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |   |   |   |                |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2    | 1      | 2    | Trival         |   |   |   |                |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1    | 1      | 1    | Trival         |   |   |   |                |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       |      |        |      |                | 0 | 1 | 0 | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |   |   |   |                |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |   |   |   |                |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |   |   |   |                |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |   |   |   |                |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T2</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |
|     |                                                                                                     |

| Location:                             | Turbine T3    |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 114228 235747 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.1 to 0.9    |
| Control Required:                     | No            |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                | Post-Control Measure In |                                                                       |      |        |      | nplementation  |   |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|-------------------------|-----------------------------------------------------------------------|------|--------|------|----------------|---|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required     | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating    |   |                |
| 1    | FOS = 1.85 (u), 2.60 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                      |                                                                       | 1    | 1      | 1    | Trival         |   |                |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                      |                                                                       | 1    | 1      | 1    | Trival         |   |                |
| 3    | Evidence of surface water flow                                                     | 2                                  | 1      | 2    | Trival         | No                      |                                                                       | 1    | 1      | 1    | Trival         |   |                |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                      |                                                                       | 0    | 1      | 0    | Not Applicable |   |                |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                      |                                                                       | 2    | 1      | 2    | Trival         |   |                |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 3                                  | 1      | 3    | Tolerable      | No                      | See Below                                                             | 2    | 1      | 2    | Trival         |   |                |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                      |                                                                       |      |        | 0    | 1              | 0 | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                      |                                                                       | 0    | 1      | 0    | Not Applicable |   |                |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                      |                                                                       | 0    | 1      | 0    | Not Applicable |   |                |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                      |                                                                       | 0    | 1      | 0    | Not Applicable |   |                |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                      |                                                                       | 0    | 1      | 0    | Not Applicable |   |                |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T3</b>                            |
|-----|----------------------------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                                       |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|     |                                                                                                                      |
|     |                                                                                                                      |

| Location:                             | Turbi  | ine T4 |  |  |  |
|---------------------------------------|--------|--------|--|--|--|
|                                       |        |        |  |  |  |
| Grid Reference (Eastings, Northings): | 112219 | 235006 |  |  |  |
| Distance to Watercourse (m)           | > '    | > 150  |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.6 t  | o 1.5  |  |  |  |
| Control Required:                     | N      | lo     |  |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                | Post-Control Measu  |                                                                       |      |        |      | asure Implementation |   |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------|------|----------------------|---|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating          |   |                |
| 1    | FOS = 2.31 (u), 2.57 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival               |   |                |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival               |   |                |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival               |   |                |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable       |   |                |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2    | 1      | 2    | Trival               |   |                |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2                                  | 1      | 2    | Trival         | No                  | See Below                                                             | 1    | 1      | 1    | Trival               |   |                |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       |      |        | 0    | 1                    | 0 | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable       |   |                |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable       |   |                |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable       |   |                |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable       |   |                |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T4</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | cation: Turbine |        |  |  |
|---------------------------------------|-----------------|--------|--|--|
|                                       |                 |        |  |  |
| Grid Reference (Eastings, Northings): | 112881          | 235297 |  |  |
| Distance to Watercourse (m)           | > '             | 150    |  |  |
| Min & Max Measured Peat Depth (m):    | 0.5 t           | o 0.7  |  |  |
| Control Required:                     | N               | lo     |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                                       | Post-Control Measure Implementat |        |      |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|----------------------------------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                             | Impact | Risk | Risk Rating    |
| 1    | FOS = 5.07 (u), 7.30 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                | 1      | 1    | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                | 1      | 1    | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                | 1      | 1    | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                | 1      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2                                | 1      | 2    | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1                                | 1      | 1    | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                | 1      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                | 1      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                | 1      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                | 1      | 0    | Not Applicable |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                | 1      | 0    | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T5</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |
|     |                                                                                                     |

| Location:                             |   | Turbine T6 |        |  |  |
|---------------------------------------|---|------------|--------|--|--|
|                                       |   |            |        |  |  |
| Grid Reference (Eastings, Northings): | L | 113486     | 235115 |  |  |
| Distance to Watercourse (m)           |   | > 150      |        |  |  |
| Min & Max Measured Peat Depth (m):    |   | 0.3 to 0.9 |        |  |  |
| Control Required:                     |   | No         |        |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                                       | Post-Control Measure Implementation |        |      |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |
| 1    | FOS = 9.05 (u), 12.74 (d)                                                          | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2                                  | 1      | 2    | Trival         | No                  | See Below                                                             | 1                                   | 1      | 1    | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T6</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | Turbine T7    |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 111632 234350 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.5 to 2.0    |
| Control Required:                     | No            |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                                       | Post-Control Measure Implementation |        |      |                |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |                |
| 1    | FOS = 5.73 (u), 5.73 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |                |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |                |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |                |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 5    | Type of vegetation                                                                 | 3                                  | 1      | 3    | Tolerable      | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |                |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1                                   | 1      | 1    | Trival         |                |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       |                                     | 0      | 1    | 0              | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T7</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | Turbine T8    |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 112295 234380 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.7 to 1.6    |
| Control Required:                     | No            |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                                       | Post-Control Measure Implementation |        |      |                |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |                |
| 1    | FOS = 5.07 (u), 7.30 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |                |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |                |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |                |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |                |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2                                  | 1      | 2    | Trival         | No                  | See Below                                                             | 1                                   | 1      | 1    | Trival         |                |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       |                                     | 0      | 1    | 0              | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |                |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T8</b>           |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| i   | Maintain hydrology of area as far as possible;                                                      |  |  |  |  |  |  |  |
| ii  | Jse of experienced geotechnical staff for site investigation;                                       |  |  |  |  |  |  |  |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |  |  |  |  |  |  |  |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |  |  |  |  |  |  |  |
|     |                                                                                                     |  |  |  |  |  |  |  |

| Location:                             | Turbine T9    |  |  |  |
|---------------------------------------|---------------|--|--|--|
|                                       |               |  |  |  |
| Grid Reference (Eastings, Northings): | 112950 234335 |  |  |  |
| Distance to Watercourse (m)           | 50 - 100      |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.9 to 1.1    |  |  |  |
| Control Required:                     | Yes           |  |  |  |

|      |                                                                                    | Pre  | re-Control Measure Implementation |      |                |                     | Post-Control Measure Implementation                                   |      |        |      |                |
|------|------------------------------------------------------------------------------------|------|-----------------------------------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact                            | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating    |
| 1    | FOS = 9.05 (u), 12.74 (d)                                                          | 1    | 3                                 | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 2    | Evidence of sub peat water flow                                                    | 1    | 3                                 | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 3    | Evidence of surface water flow                                                     | 1    | 3                                 | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 4    | Evidence of previous failures/slips                                                | 0    | 3                                 | 0    | Not Applicable | No                  | See Below                                                             | 0    | 3      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2    | 3                                 | 6    | Substantial    | Yes                 |                                                                       | 1    | 3      | 3    | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 3                                 | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 3                                 | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 3                                 | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 3                                 | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0    | 3                                 | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 11   | Other                                                                              | 0    | 3                                 | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T9</b>                            |
|-----|----------------------------------------------------------------------------------------------------------------------|
|     | Control Measures to be implemented if not toland builting Constitution for Furbine 13                                |
| i   | Maintain hydrology of area as far as possible;                                                                       |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |
| V   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |
|     |                                                                                                                      |

| Location:                             | Turbine T10   |  |  |
|---------------------------------------|---------------|--|--|
|                                       |               |  |  |
| Grid Reference (Eastings, Northings): | 113625 234507 |  |  |
| Distance to Watercourse (m)           | 50 - 100      |  |  |
| Min & Max Measured Peat Depth (m):    | 1.0 to 1.5    |  |  |
| Control Required:                     | Yes           |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     | Post-Control Measure Implementation                                   |      |        |      |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating    |
| 1    | FOS = 6.88 (u), 7.65 (d)                                                           | 1                                  | 3      | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 3      | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 3    | Evidence of surface water flow                                                     | 1                                  | 3      | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 3      | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 3      | 6    | Substantial    | Yes                 | See Below                                                             | 1    | 3      | 3    | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 3      | 3    | Tolerable      | No                  |                                                                       | 1    | 3      | 3    | Tolerable      |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 3      | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 3      | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 3      | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 3      | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |
| 11   | Other                                                                              | 0                                  | 3      | 0    | Not Applicable | No                  |                                                                       | 0    | 3      | 0    | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T10</b>                           |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| i   | Maintain hydrology of area as far as possible;                                                                       |  |  |  |  |  |  |  |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |  |  |  |  |  |  |  |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |  |  |  |  |  |  |  |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |  |  |  |  |  |  |  |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |  |  |  |  |  |  |  |
|     |                                                                                                                      |  |  |  |  |  |  |  |
|     |                                                                                                                      |  |  |  |  |  |  |  |

| Location: Turbine T                   |        |        |  |  |  |
|---------------------------------------|--------|--------|--|--|--|
|                                       |        |        |  |  |  |
| Grid Reference (Eastings, Northings): | 114300 | 234700 |  |  |  |
| Distance to Watercourse (m)           | > 1    | 150    |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.7 t  | o 1.1  |  |  |  |
| Control Required:                     | N      | No     |  |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                | Post-C              |                                                                       |      | Control Measure Implementation |      |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------------------------------|------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact                         | Risk | Risk Rating    |
| 1    | FOS = 8.19 (u), 10.43 (d)                                                          | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1                              | 1    | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1                              | 1    | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1                              | 1    | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1                              | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2    | 1                              | 2    | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1    | 1                              | 1    | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1                              | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1                              | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1                              | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1                              | 0    | Not Applicable |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1                              | 0    | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T11</b>          |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |
|     |                                                                                                     |

| Location:                             | Turbine T12   |  |  |  |  |
|---------------------------------------|---------------|--|--|--|--|
|                                       |               |  |  |  |  |
| Grid Reference (Eastings, Northings): | 111118 233704 |  |  |  |  |
| Distance to Watercourse (m)           | > 150         |  |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.7 to 1.2    |  |  |  |  |
| Control Required:                     | No            |  |  |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     | Post-Control Measure Implementation                                   |      |        |      |                |        |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------|------|----------------|--------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating    |        |
| 1    | FOS = 3.92 (u), 4.79 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       |      | 1      | 1    | 1              | Trival |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |        |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |        |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |        |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2    | 1      | 2    | Trival         |        |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2                                  | 1      | 2    | Trival         | No                  | See Below                                                             | 2    | 1      | 2    | Trival         |        |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |        |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |        |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |        |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |        |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |        |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T12</b>          |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |

| Location: Turbine                     |        |            |  |  |  |
|---------------------------------------|--------|------------|--|--|--|
|                                       |        |            |  |  |  |
| Grid Reference (Eastings, Northings): | 111858 | 233787     |  |  |  |
| Distance to Watercourse (m)           | 100    | - 150      |  |  |  |
| Min & Max Measured Peat Depth (m):    | 3.5 t  | 3.5 to 3.7 |  |  |  |
| Control Required:                     | Υ      | Yes        |  |  |  |

|      |                                                                                    | Pre- | Pre-Control Measure Implementation |      |                |                     |                                                                       | Post-Control Measure Impleme |        |      | plementation   |        |
|------|------------------------------------------------------------------------------------|------|------------------------------------|------|----------------|---------------------|-----------------------------------------------------------------------|------------------------------|--------|------|----------------|--------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact                             | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                         | Impact | Risk | Risk Rating    |        |
| 1    | FOS = 3.66 (u), 3.10 (d)                                                           | 1    | 2                                  | 2    | Trival         | No                  |                                                                       |                              | 1      | 2    | 2              | Trival |
| 2    | Evidence of sub peat water flow                                                    | 1    | 2                                  | 2    | Trival         | No                  |                                                                       | 1                            | 2      | 2    | Trival         |        |
| 3    | Evidence of surface water flow                                                     | 1    | 2                                  | 2    | Trival         | No                  |                                                                       | 1                            | 2      | 2    | Trival         |        |
| 4    | Evidence of previous failures/slips                                                | 0    | 2                                  | 0    | Not Applicable | No                  |                                                                       | 0                            | 2      | 0    | Not Applicable |        |
| 5    | Type of vegetation                                                                 | 2    | 2                                  | 4    | Tolerable      | No                  |                                                                       | 1                            | 2      | 2    | Trival         |        |
|      | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 2                                  | 2    | Trival         | No                  | See Below                                                             | 1                            | 2      | 2    | Trival         |        |
| _ /  | Evidence of very soft/soft clay at base of peat                                    | 0    | 2                                  | 0    | Not Applicable | No                  |                                                                       | 0                            | 2      | 0    | Not Applicable |        |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 2                                  | 0    | Not Applicable | No                  |                                                                       | 0                            | 2      | 0    | Not Applicable |        |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 2                                  | 0    | Not Applicable | No                  |                                                                       | 0                            | 2      | 0    | Not Applicable |        |
| 10   | Evidence of bog pools                                                              | 0    | 2                                  | 0    | Not Applicable | No                  |                                                                       | 0                            | 2      | 0    | Not Applicable |        |
| 11   | Relatively deep peat                                                               | 3    | 2                                  | 6    | Substantial    | Yes                 |                                                                       | 1                            | 2      | 2    | Trival         |        |

|     | <u></u>                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------|
|     | Control Measures to be Implemented Prior to/and During Construction for Turbine T13                                       |
| i   | Due to relatively deep peat at this turbine location this will require additional construction measures such as :         |
|     | - excavation side walls to be supported (eg. boulders, retaining wall units) or excavation face battered to shallow angle |
|     | - use of a piled foundation may be adopted at this location                                                               |
|     | - temporary works designer may be required to provide excavation support design                                           |
|     | - daily detailed inspection of excavation faces                                                                           |
|     | - potential for greater water inflow into excavation requiring removal of water using pumping                             |
|     | - increased exclusion zone around excavation to avoid accidental loading of crest of slope                                |
|     | - use of low load bearing plant and machinery during construction and bog mats                                            |
| ii  | Maintain hydrology of area as far as possible;                                                                            |
| iii | Use of experienced geotechnical staff for site investigation;                                                             |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                               |
| V   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                       |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |

| Location:                             | Turbine T14 |        |  |  |
|---------------------------------------|-------------|--------|--|--|
|                                       |             |        |  |  |
| Grid Reference (Eastings, Northings): | 112547      | 233828 |  |  |
| Distance to Watercourse (m)           | > '         | 150    |  |  |
| Min & Max Measured Peat Depth (m):    | 1.0 t       | o 3.5  |  |  |
| Control Required:                     | Yes         |        |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     | Post-Control Measure Implementation                                   |      |        |      |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact | Risk | Risk Rating    |
| 1    | FOS = 3.82 (u), 3.28 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 1    | 1      | 1    | Trival         |
|      | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1    | 1      | 1    | Trival         |
| _ /  | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0    | 1      | 0    | Not Applicable |
| 11   | Relatively deep peat                                                               | 3                                  | 1      | 3    | Tolerable      | Yes                 |                                                                       | 1    | 1      | 1    | Trival         |

|     | Control Measures to be Implemented Prior to/and During Construction for Turbine T14                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| i   | Due to relatively deep peat at this turbine location this will require additional construction measures such as :         |
|     | - excavation side walls to be supported (eg. boulders, retaining wall units) or excavation face battered to shallow angle |
|     | - use of a piled foundation may be adopted at this location                                                               |
|     | - temporary works designer may be required to provide excavation support design                                           |
|     | - daily detailed inspection of excavation faces                                                                           |
|     | - potential for greater water inflow into excavation requiring removal of water using pumping                             |
|     | - increased exclusion zone around excavation to avoid accidental loading of crest of slope                                |
|     | - use of low load bearing plant and machinery during construction and bog mats                                            |
| ii  | Maintain hydrology of area as far as possible;                                                                            |
| iii | Use of experienced geotechnical staff for site investigation;                                                             |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                               |
| V   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                       |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |

| Location:                             | Turbii | Turbine T15 |  |  |  |
|---------------------------------------|--------|-------------|--|--|--|
|                                       |        |             |  |  |  |
| Grid Reference (Eastings, Northings): | 113400 | 233770      |  |  |  |
| Distance to Watercourse (m)           | > '    | 150         |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.8 t  | 0.8 to 1.2  |  |  |  |
| Control Required:                     | N      | No          |  |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     | Post-                                                                 | -Control Me | easure Imp | olementation |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|-------------|------------|--------------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob        | Impact     | Risk         | Risk Rating    |
| 1    | FOS = 7.82 (u), 9.56 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1           | 1          | 1            | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1           | 1          | 1            | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1           | 1          | 1            | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0           | 1          | 0            | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2           | 1          | 2            | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1           | 1          | 1            | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0           | 1          | 0            | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0           | 1          | 0            | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0           | 1          | 0            | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0           | 1          | 0            | Not Applicable |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0           | 1          | 0            | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T15</b>          |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | Turbine T16   |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 111114 233036 |
| Distance to Watercourse (m)           | 100 - 150     |
| Min & Max Measured Peat Depth (m):    | 1.2 to 1.6    |
| Control Required:                     | No            |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                                       | Pos  | st-Control M | easure Imp | lementation    |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|------|--------------|------------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact       | Risk       | Risk Rating    |
| 1    | FOS = 13.22 (u), 14.33 (d)                                                         | 1                                  | 2      | 2    | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 2      | 2    | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 2      | 2    | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 2      | 0    | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 2      | 4    | Tolerable      | No                  |                                                                       | 2    | 2            | 4          | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2                                  | 2      | 4    | Tolerable      | No                  | See Below                                                             | 1    | 2            | 2          | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 2      | 0    | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 2      | 0    | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 1                                  | 2      | 2    | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 10   | Evidence of bog pools                                                              | 1                                  | 2      | 2    | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 11   | Other                                                                              | 0                                  | 2      | 0    | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T16</b>                           |
|-----|----------------------------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                                       |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|     |                                                                                                                      |

| Location:                             | Turbine T17   |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 112270 233254 |
| Distance to Watercourse (m)           | 50 - 100      |
| Min & Max Measured Peat Depth (m):    | 0.4 to 1.7    |
| Control Required:                     | Yes           |

|      |                                                                                    | Pre  | -Control Meas | sure Imple | mentation      |                     |                                                                       | Post-Control Measure Impleme |        |      | olementation   |
|------|------------------------------------------------------------------------------------|------|---------------|------------|----------------|---------------------|-----------------------------------------------------------------------|------------------------------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob | Impact        | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                         | Impact | Risk | Risk Rating    |
| 1    | FOS = 6.37 (u), 6.75 (d)                                                           | 1    | 3             | 3          | Tolerable      | No                  |                                                                       | 1                            | 3      | 3    | Tolerable      |
| 2    | Evidence of sub peat water flow                                                    | 1    | 3             | 3          | Tolerable      | No                  |                                                                       | 1                            | 3      | 3    | Tolerable      |
| 3    | Evidence of surface water flow                                                     | 1    | 3             | 3          | Tolerable      | No                  |                                                                       | 1                            | 3      | 3    | Tolerable      |
| 4    | Evidence of previous failures/slips                                                | 0    | 3             | 0          | Not Applicable | No                  |                                                                       | 0                            | 3      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2    | 3             | 6          | Substantial    | Yes                 |                                                                       | 1                            | 3      | 3    | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 3             | 3          | Tolerable      | No                  | See Below                                                             | 1                            | 3      | 3    | Tolerable      |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 3             | 0          | Not Applicable | No                  |                                                                       | 0                            | 3      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 3             | 0          | Not Applicable | No                  |                                                                       | 0                            | 3      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 3             | 0          | Not Applicable | No                  |                                                                       | 0                            | 3      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0    | 3             | 0          | Not Applicable | No                  |                                                                       | 0                            | 3      | 0    | Not Applicable |
| 11   | Other                                                                              | 0    | 3             | 0          | Not Applicable | No                  |                                                                       | 0                            | 3      | 0    | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T17</b>                           |
|-----|----------------------------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                                       |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|     |                                                                                                                      |

| Location:                             | Turbii | Turbine T18 |  |  |  |
|---------------------------------------|--------|-------------|--|--|--|
|                                       |        |             |  |  |  |
| Grid Reference (Eastings, Northings): | 113412 | 233258      |  |  |  |
| Distance to Watercourse (m)           | 100    | - 150       |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.2 t  | o 1.6       |  |  |  |
| Control Required:                     | N      | No          |  |  |  |

|      |                                                                                    | Pre  | -Control Meas | sure Imple | mentation      |                     |                                                                       | Post- | -Control Me | easure Imp | olementation   |
|------|------------------------------------------------------------------------------------|------|---------------|------------|----------------|---------------------|-----------------------------------------------------------------------|-------|-------------|------------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob | Impact        | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob  | Impact      | Risk       | Risk Rating    |
| 1    | FOS = 1.91 (u), 2.07 (d)                                                           | 1    | 2             | 2          | Trival         | No                  |                                                                       | 1     | 2           | 2          | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1    | 2             | 2          | Trival         | No                  |                                                                       | 1     | 2           | 2          | Trival         |
| 3    | Evidence of surface water flow                                                     | 1    | 2             | 2          | Trival         | No                  |                                                                       | 1     | 2           | 2          | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0    | 2             | 0          | Not Applicable | No                  |                                                                       | 0     | 2           | 0          | Not Applicable |
| 5    | Type of vegetation                                                                 | 2    | 2             | 4          | Tolerable      | No                  |                                                                       | 2     | 2           | 4          | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2    | 2             | 4          | Tolerable      | No                  | See Below                                                             | 2     | 2           | 4          | Tolerable      |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 2             | 0          | Not Applicable | No                  |                                                                       | 0     | 2           | 0          | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 2             | 0          | Not Applicable | No                  |                                                                       | 0     | 2           | 0          | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 2             | 0          | Not Applicable | No                  |                                                                       | 0     | 2           | 0          | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0    | 2             | 0          | Not Applicable | No                  |                                                                       | 0     | 2           | 0          | Not Applicable |
| 11   | Other                                                                              | 0    | 2             | 0          | Not Applicable | No                  |                                                                       | 0     | 2           | 0          | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for Turbine T18                 |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | Turbine T19   |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 114099 233365 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.5 to 0.8    |
| Control Required:                     | No            |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                                       | Post- | -Control Me | easure Imp | olementation   |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|-------|-------------|------------|----------------|
| Ref. | Contributory/Qualitative Factors to Potential<br>Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob  | Impact      | Risk       | Risk Rating    |
| 1    | FOS = 3.84 (u), 5.52 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1     | 1           | 1          | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1     | 1           | 1          | Trival         |
| 3    | Evidence of surface water flow                                                     | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 1     | 1           | 1          | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0     | 1           | 0          | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2     | 1           | 2          | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2                                  | 1      | 2    | Trival         | No                  | See Below                                                             | 2     | 1           | 2          | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0     | 1           | 0          | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0     | 1           | 0          | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0     | 1           | 0          | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0     | 1           | 0          | Not Applicable |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0     | 1           | 0          | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T19</b>                           |
|-----|----------------------------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                                       |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|     |                                                                                                                      |

| Location:                             |   | Turbine T20 |        |  |  |
|---------------------------------------|---|-------------|--------|--|--|
|                                       |   |             |        |  |  |
| Grid Reference (Eastings, Northings): | 1 | 11206       | 232296 |  |  |
| Distance to Watercourse (m)           |   | > 150       |        |  |  |
| Min & Max Measured Peat Depth (m):    |   | 0.8 to 3.4  |        |  |  |
| Control Required:                     |   | Yes         |        |  |  |

|      |                                                                                    | Pre- | Pre-Control Measure Implementation |      |                |                     |                                                                       | Post- | Control Me | easure Im | plementation   |        |
|------|------------------------------------------------------------------------------------|------|------------------------------------|------|----------------|---------------------|-----------------------------------------------------------------------|-------|------------|-----------|----------------|--------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact                             | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob  | Impact     | Risk      | Risk Rating    |        |
| 1    | FOS = 3.91 (u), 3.37 (d)                                                           | 1    | 1                                  | 1    | Trival         | No                  |                                                                       |       | 1          | 1         | 1              | Trival |
| 2    | Evidence of sub peat water flow                                                    | 1    | 1                                  | 1    | Trival         | No                  |                                                                       | 1     | 1          | 1         | Trival         |        |
| 3    | Evidence of surface water flow                                                     | 1    | 1                                  | 1    | Trival         | No                  |                                                                       | 1     | 1          | 1         | Trival         |        |
| 4    | Evidence of previous failures/slips                                                | 0    | 1                                  | 0    | Not Applicable | No                  |                                                                       | 0     | 1          | 0         | Not Applicable |        |
| 5    | Type of vegetation                                                                 | 2    | 1                                  | 2    | Trival         | No                  |                                                                       | 1     | 1          | 1         | Trival         |        |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 1                                  | 1    | Trival         | No                  | See Below                                                             | 1     | 1          | 1         | Trival         |        |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 1                                  | 0    | Not Applicable | No                  |                                                                       | 0     | 1          | 0         | Not Applicable |        |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 1                                  | 0    | Not Applicable | No                  |                                                                       | 0     | 1          | 0         | Not Applicable |        |
| 9    | Evidence of quaking or buoyant peat                                                | 1    | 1                                  | 1    | Trival         | No                  |                                                                       | 1     | 1          | 1         | Trival         |        |
| 10   | Evidence of bog pools                                                              | 0    | 1                                  | 0    | Not Applicable | No                  |                                                                       | 0     | 1          | 0         | Not Applicable |        |
| 11   | Relatively deep peat                                                               | 3    | 1                                  | 3    | Tolerable      | Yes                 |                                                                       | 1     | 1          | 1         | Trival         |        |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T20</b>                                |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| i   | Due to relatively deep peat at this turbine location this will require additional construction measures such as :         |
|     | - excavation side walls to be supported (eg. boulders, retaining wall units) or excavation face battered to shallow angle |
|     | - use of a piled foundation may be adopted at this location                                                               |
|     | - temporary works designer may be required to provide excavation support design                                           |
|     | - daily detailed inspection of excavation faces                                                                           |
|     | - potential for greater water inflow into excavation requiring removal of water using pumping                             |
|     | - increased exclusion zone around excavation to avoid accidental loading of crest of slope                                |
|     | - use of low load bearing plant and machinery during construction and bog mats                                            |
| ii  | Maintain hydrology of area as far as possible;                                                                            |
| iii | Use of experienced geotechnical staff for site investigation;                                                             |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                               |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                       |
| Ī   |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |

| Location:                             | Turbine T21   |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 111996 232611 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.5 to 1.7    |
| Control Required:                     | No            |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     | Post                                                                  | t-Control Me | easure Imple | ementation |                |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|-----------------------------------------------------------------------|--------------|--------------|------------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob         | Impact       | Risk       | Risk Rating    |
| 1    | FOS = 6.37 (u), 6.75 (d)                                                           | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1            | 1            | 1          | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1            | 1            | 1          | Trival         |
| 3    | Evidence of surface water flow                                                     | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1            | 1            | 1          | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0            | 1            | 0          | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2            | 1            | 2          | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 1      | 1    | Trival         | No                  | See Below                                                             | 1            | 1            | 1          | Trival         |
| /    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0            | 1            | 0          | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0            | 1            | 0          | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 2                                  | 1      | 2    | Trival         | No                  |                                                                       | 2            | 1            | 2          | Trival         |
| 10   | Evidence of bog pools                                                              | 1                                  | 1      | 1    | Trival         | No                  |                                                                       | 1            | 1            | 1          | Trival         |
| 11   | Other                                                                              | 0                                  | 1      | 0    | Not Applicable | No                  |                                                                       | 0            | 1            | 0          | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T21</b>                           |
|-----|----------------------------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                                       |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| iii | Use of experienced geotechnical staff for site investigation;                                                        |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                          |
| v   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|     |                                                                                                                      |

| Location:                             | Turbine T22   |  |  |  |
|---------------------------------------|---------------|--|--|--|
|                                       |               |  |  |  |
| Grid Reference (Eastings, Northings): | 112637 232775 |  |  |  |
| Distance to Watercourse (m)           | 100 - 150     |  |  |  |
| Min & Max Measured Peat Depth (m):    | 1.0 to 2.8    |  |  |  |
| Control Required:                     | Yes           |  |  |  |

|      |                                                                                    | Pre- | Control Mea | sure Imple | ementation     |                     |                                                                       | Post-Control Measure Implementation |        |      |                |  |
|------|------------------------------------------------------------------------------------|------|-------------|------------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|--|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact      | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |  |
| 1    | FOS = 4.53 (u), 4.10 (d)                                                           | 1    | 2           | 2          | Trival         | No                  |                                                                       | 1                                   | 2      | 2    | Trival         |  |
| 2    | Evidence of sub peat water flow                                                    | 1    | 2           | 2          | Trival         | No                  |                                                                       | 1                                   | 2      | 2    | Trival         |  |
| 3    | Evidence of surface water flow                                                     | 1    | 2           | 2          | Trival         | No                  |                                                                       | 1                                   | 2      | 2    | Trival         |  |
| 4    | Evidence of previous failures/slips                                                | 0    | 2           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |  |
| 5    | Type of vegetation                                                                 | 2    | 2           | 4          | Tolerable      | No                  |                                                                       | 1                                   | 2      | 2    | Trival         |  |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 2           | 2          | Trival         | No                  | See Below                                                             | 1                                   | 2      | 2    | Trival         |  |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 2           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |  |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 2           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |  |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 2           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |  |
| 10   | Evidence of bog pools                                                              | 0    | 2           | 0          | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |  |
| 11   | Relatively deep peat                                                               | 3    | 2           | 6          | Substantial    | Yes                 |                                                                       | 1                                   | 2      | 2    | Trival         |  |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T22</b>                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i   | Due to relatively deep peat at this turbine location this will require additional construction measures such as :                                                         |
|     | - excavation side walls to be supported (eg. boulders, retaining wall units) or excavation face battered to shallow angle                                                 |
|     | - temporary works designer may be required to provide excavation support design                                                                                           |
|     | - daily detailed inspection of excavation faces                                                                                                                           |
|     | - potential for greater water inflow into excavation requiring removal of water using pumping                                                                             |
|     | - increased exclusion zone around excavation to avoid accidental loading of crest of slope - use of low load bearing plant and machinery during construction and bog mats |
| ii  | Maintain hydrology of area as far as possible;                                                                                                                            |
| iii | Use of experienced geotechnical staff for site investigation;                                                                                                             |
| iv  | Use of experienced contractors and trained operators to carry out the work;                                                                                               |
| V   | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                                                                       |
|     |                                                                                                                                                                           |
|     |                                                                                                                                                                           |
|     |                                                                                                                                                                           |
|     |                                                                                                                                                                           |
|     |                                                                                                                                                                           |
|     |                                                                                                                                                                           |

| Location:                             | Turbine T23   |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 110573 231801 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.5 to 1.2    |
| Control Required:                     | No            |

|      |                                                                                    | Pre- | Control Meas | sure Imple | mentation      |                     |                                                                       | Post-Control Measure Implementation |        |      |                |  |
|------|------------------------------------------------------------------------------------|------|--------------|------------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|--|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact       | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |  |
| 1    | FOS = 7.82 (u), 9.56 (d)                                                           | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 2    | Evidence of sub peat water flow                                                    | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 3    | Evidence of surface water flow                                                     | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 4    | Evidence of previous failures/slips                                                | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 5    | Type of vegetation                                                                 | 2    | 1            | 2          | Trival         | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |  |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 1            | 1          | Trival         | No                  | See Below                                                             | 1                                   | 1      | 1    | Trival         |  |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 10   | Evidence of bog pools                                                              | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 11   | Other                                                                              | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T24</b>          |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | Turbine T24   |
|---------------------------------------|---------------|
|                                       |               |
| Grid Reference (Eastings, Northings): | 111208 231589 |
| Distance to Watercourse (m)           | > 150         |
| Min & Max Measured Peat Depth (m):    | 0.8 to 1.3    |
| Control Required:                     | No            |

|      |                                                                                    | Pre- | Control Meas | sure Imple | mentation      |                     |                                                                       | Post-Control Measure Implementation |        |      |                |  |
|------|------------------------------------------------------------------------------------|------|--------------|------------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|--|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact       | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |  |
| 1    | FOS = 4.99 (u), 5.89 (d)                                                           | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 2    | Evidence of sub peat water flow                                                    | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 3    | Evidence of surface water flow                                                     | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 4    | Evidence of previous failures/slips                                                | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 5    | Type of vegetation                                                                 | 2    | 1            | 2          | Trival         | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |  |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 1            | 1          | Trival         | No                  | See Below                                                             | 1                                   | 1      | 1    | Trival         |  |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 10   | Evidence of bog pools                                                              | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 11   | Other                                                                              | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T25</b>          |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |
|     |                                                                                                     |

| Location:                             | Turbine T25 |        |  |  |  |
|---------------------------------------|-------------|--------|--|--|--|
|                                       |             |        |  |  |  |
| Grid Reference (Eastings, Northings): | 111778      | 231971 |  |  |  |
| Distance to Watercourse (m)           | > 150       |        |  |  |  |
| Min & Max Measured Peat Depth (m):    | 1.0 to 2.1  |        |  |  |  |
| Control Required:                     | No          |        |  |  |  |

|      |                                                                                    | Pre- | Control Meas | sure Imple | mentation      |                     |                                                                       | Post-Control Measure Implementation |        |      |                |  |
|------|------------------------------------------------------------------------------------|------|--------------|------------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|--|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact       | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |  |
| 1    | FOS = 2.78 (u), 2.74 (d)                                                           | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 2    | Evidence of sub peat water flow                                                    | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 3    | Evidence of surface water flow                                                     | 1    | 1            | 1          | Trival         | No                  |                                                                       | 1                                   | 1      | 1    | Trival         |  |
| 4    | Evidence of previous failures/slips                                                | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 5    | Type of vegetation                                                                 | 2    | 1            | 2          | Trival         | No                  |                                                                       | 2                                   | 1      | 2    | Trival         |  |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2    | 1            | 2          | Trival         | No                  | See Below                                                             | 2                                   | 1      | 2    | Trival         |  |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 10   | Evidence of bog pools                                                              | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |
| 11   | Other                                                                              | 0    | 1            | 0          | Not Applicable | No                  |                                                                       | 0                                   | 1      | 0    | Not Applicable |  |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Turbine T26</b>          |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |

| Location:                             | Met Mast     | Met Mast |  |  |  |  |
|---------------------------------------|--------------|----------|--|--|--|--|
|                                       |              |          |  |  |  |  |
| Grid Reference (Eastings, Northings): | 114327 23499 | 96       |  |  |  |  |
| Distance to Watercourse (m)           | 50 - 100     |          |  |  |  |  |
| Min & Max Measured Peat Depth (m):    | 0.6 to 2.5   |          |  |  |  |  |
| Control Required:                     | Yes          | Yes      |  |  |  |  |

|      |                                                                                    | Pre-Control Measure Implementation |        |      |                |                     |                                                        | Pos  | st-Control N | /leasure In | nplementation  |
|------|------------------------------------------------------------------------------------|------------------------------------|--------|------|----------------|---------------------|--------------------------------------------------------|------|--------------|-------------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob                               | Impact | Risk | Risk Rating    | Control<br>Required | Control measures to be implemented during construction | Prob | Impact       | Risk        | Risk Rating    |
| 1    | FOS = 9.82 (u), 9.17 (d)                                                           | 1                                  | 3      | 3    | Tolerable      | No                  |                                                        | 1    | 3            | 3           | Tolerable      |
| 2    | Evidence of sub peat water flow                                                    | 1                                  | 3      | 3    | Tolerable      | No                  |                                                        | 1    | 3            | 3           | Tolerable      |
| 3    | Evidence of surface water flow                                                     | 2                                  | 3      | 6    | Substantial    | Yes                 |                                                        | 1    | 3            | 3           | Tolerable      |
| 4    | Evidence of previous failures/slips                                                | 0                                  | 3      | 0    | Not Applicable | No                  |                                                        | 0    | 3            | 0           | Not Applicable |
| 5    | Type of vegetation                                                                 | 2                                  | 3      | 6    | Substantial    | Yes                 |                                                        | 1    | 3            | 3           | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1                                  | 3      | 3    | Tolerable      | No                  | See Below                                              | 1    | 3            | 3           | Tolerable      |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0                                  | 3      | 0    | Not Applicable | No                  |                                                        | 0    | 3            | 0           | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0                                  | 3      | 0    | Not Applicable | No                  |                                                        | 0    | 3            | 0           | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0                                  | 3      | 0    | Not Applicable | No                  |                                                        | 0    | 3            | 0           | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0                                  | 3      | 0    | Not Applicable | No                  |                                                        | 0    | 3            | 0           | Not Applicable |
| 11   | Relatively deep peat                                                               | 2                                  | 3      | 6    | Substantial    | Yes                 |                                                        | 1    | 3            | 3           | Tolerable      |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Met Mast</b>                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| i   | Due to relatively deep peat at the met mast location this will require additional construction measures such as:          |
| ,   | - excavation side walls to be supported (eg. boulders, retaining wall units) or excavation face battered to shallow angle |
|     | - temporary works designer may be required to provide excavation support design                                           |
|     | - daily detailed inspection of excavation faces                                                                           |
|     | - potential for greater water inflow into excavation requiring removal of water using pumping                             |
|     | - increased exclusion zone around excavation to avoid accidental loading of crest of slope                                |
|     | - use of low load bearing plant and machinery during construction and bog mats                                            |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area;      |
| iii | Maintain hydrology of area as far as possible;                                                                            |
| iv  | Use of experienced geotechnical staff for site investigation;                                                             |
| V   | Use of experienced contractors and trained operators to carry out the work;                                               |
| vi  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                       |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |

| Location:                             | Sı   | ıbs  | tation |
|---------------------------------------|------|------|--------|
|                                       |      |      |        |
| Grid Reference (Eastings, Northings): | 1138 | 96   | 234938 |
| Distance to Watercourse (m)           |      | > '  | 150    |
| Min & Max Measured Peat Depth (m):    |      | 0 to | 0.5    |
| Control Required:                     |      | ١    | No     |

|      |                                                                                    | Pre  | e-Control Mea | asure Impl | ementation     |                     |                                                                       | Pos  | st-Control N | ∕leasure In | nplementation  |
|------|------------------------------------------------------------------------------------|------|---------------|------------|----------------|---------------------|-----------------------------------------------------------------------|------|--------------|-------------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact        | Risk       | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact       | Risk        | Risk Rating    |
| 1    | FOS = 2.90 (u), 4.15 (d)                                                           | 1    | 1             | 1          | Trival         | No                  |                                                                       | 1    | 1            | 1           | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1    | 1             | 1          | Trival         | No                  |                                                                       | 1    | 1            | 1           | Trival         |
| 3    | Evidence of surface water flow                                                     | 1    | 1             | 1          | Trival         | No                  |                                                                       | 1    | 1            | 1           | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0    | 1             | 0          | Not Applicable | No                  |                                                                       | 0    | 1            | 0           | Not Applicable |
| 5    | Type of vegetation                                                                 | 2    | 1             | 2          | Trival         | No                  |                                                                       | 2    | 1            | 2           | Trival         |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2    | 1             | 2          | Trival         | No                  | See Below                                                             | 2    | 1            | 2           | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 1             | 0          | Not Applicable | No                  |                                                                       | 0    | 1            | 0           | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 1             | 0          | Not Applicable | No                  |                                                                       | 0    | 1            | 0           | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 1             | 0          | Not Applicable | No                  |                                                                       | 0    | 1            | 0           | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0    | 1             | 0          | Not Applicable | No                  | ,                                                                     | 0    | 1            | 0           | Not Applicable |
| 11   | Other                                                                              | 0    | 1             | 0          | Not Applicable | No                  |                                                                       | 0    | 1            | 0           | Not Applicable |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Substation</b>           |
|-----|-----------------------------------------------------------------------------------------------------|
| i   | Maintain hydrology of area as far as possible;                                                      |
| ii  | Use of experienced geotechnical staff for site investigation;                                       |
| iii | Use of experienced contractors and trained operators to carry out the work;                         |
| iv  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties. |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |
|     |                                                                                                     |

Location: Temp. Const. Compound 1

 Grid Reference (Eastings, Northings):
 114456
 235280

 Distance to Watercourse (m)
 100 - 150

 Min & Max Measured Peat Depth (m):
 0.3 to 2.4

 Control Required:
 Yes

|      |                                                                                    | Pro  | e-Control Measur | e Impleme | entation       |                     |                                                                       | Pos  | st-Control N | Measure In | nplementation  |
|------|------------------------------------------------------------------------------------|------|------------------|-----------|----------------|---------------------|-----------------------------------------------------------------------|------|--------------|------------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact           | Risk      | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob | Impact       | Risk       | Risk Rating    |
| 1    | FOS = 4.59 (u), 5.10 (d)                                                           | 1    | 2                | 2         | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1    | 2                | 2         | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 3    | Evidence of surface water flow                                                     | 1    | 2                | 2         | Trival         | No                  |                                                                       | 1    | 2            | 2          | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0    | 2                | 0         | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 5    | Type of vegetation                                                                 | 2    | 2                | 4         | Tolerable      | No                  |                                                                       | 2    | 2            | 4          | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 1    | 2                | 2         | Trival         | No                  | See Below                                                             | 1    | 2            | 2          | Trival         |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 2                | 0         | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 2                | 0         | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 2                | 0         | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0    | 2                | 0         | Not Applicable | No                  |                                                                       | 0    | 2            | 0          | Not Applicable |
| 11   | Relatively deep peat                                                               | 2    | 2                | 4         | Tolerable      | Yes                 |                                                                       | 1    | 2            | 2          | Trival         |

|     | Control Measures to be Implemented Prior to/and During Construction for <b>Temp. Const. Compound 1</b>                    |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| i   | Due to relatively deep peat at the compound location this will require additional construction measures such as:          |
|     | - excavation side walls to be supported (eg. boulders, retaining wall units) or excavation face battered to shallow angle |
|     | - temporary works designer may be required to provide excavation support design                                           |
|     | - daily detailed inspection of excavation faces                                                                           |
|     | - potential for greater water inflow into excavation requiring removal of water using pumping                             |
|     | - increased exclusion zone around excavation to avoid accidental loading of crest of slope                                |
|     | - use of low load bearing plant and machinery during construction and bog mats                                            |
| ii  | Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area;      |
| iii | Maintain hydrology of area as far as possible;                                                                            |
| iv  | Use of experienced geotechnical staff for site investigation;                                                             |
| V   | Use of experienced contractors and trained operators to carry out the work;                                               |
| vi  | Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                       |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     |                                                                                                                           |

### Note

| Location:                             | Temp. Cons | st. Compound | d 2 |  |  |
|---------------------------------------|------------|--------------|-----|--|--|
| Grid Reference (Eastings, Northings): | 110413     | 232110       |     |  |  |
| Distance to Watercourse (m)           | 100        | - 150        |     |  |  |
| Min & Max Measured Peat Depth (m):    | 0 to       | 0 to 2.0     |     |  |  |
| Control Required:                     | N          | lo           |     |  |  |

|      |                                                                                    | F    | re-Control Measu | re Implementa | ation          |                     |                                                                       | Post-Control Measure Implementation |        |      |                |
|------|------------------------------------------------------------------------------------|------|------------------|---------------|----------------|---------------------|-----------------------------------------------------------------------|-------------------------------------|--------|------|----------------|
| Ref. | Contributory/Qualitative Factors to<br>Potential Peat Failure                      | Prob | Impact           | Risk          | Risk Rating    | Control<br>Required | Control<br>measures to<br>be<br>implemented<br>during<br>construction | Prob                                | Impact | Risk | Risk Rating    |
| 1    | FOS = 2.30 (u), 2.30 (d)                                                           | 1    | 2                | 2             | Trival         | No                  |                                                                       | 1                                   | 2      | 2    | Trival         |
| 2    | Evidence of sub peat water flow                                                    | 1    | 2                | 2             | Trival         | No                  | ]                                                                     | 1                                   | 2      | 2    | Trival         |
| 3    | Evidence of surface water flow                                                     | 1    | 2                | 2             | Trival         | No                  |                                                                       | 1                                   | 2      | 2    | Trival         |
| 4    | Evidence of previous failures/slips                                                | 0    | 2                | 0             | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |
| 5    | Type of vegetation                                                                 | 2    | 2                | 4             | Tolerable      | No                  |                                                                       | 2                                   | 2      | 4    | Tolerable      |
| 6    | General slope characteristics<br>upslope/downslope from infrastructure<br>location | 2    | 2                | 4             | Tolerable      | No                  | See Below                                                             | 2                                   | 2      | 4    | Tolerable      |
| 7    | Evidence of very soft/soft clay at base of peat                                    | 0    | 2                | 0             | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |
| 8    | Evidence of mechanically cut peat                                                  | 0    | 2                | 0             | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |
| 9    | Evidence of quaking or buoyant peat                                                | 0    | 2                | 0             | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |
| 10   | Evidence of bog pools                                                              | 0    | 2                | 0             | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |
| 11   | Other                                                                              | 0    | 2                | 0             | Not Applicable | No                  |                                                                       | 0                                   | 2      | 0    | Not Applicable |

| Control Measures to be Implemented Prior to/and During Construction for Temp. Const. Compound 2                      |
|----------------------------------------------------------------------------------------------------------------------|
| Maintain hydrology of area as far as possible;                                                                       |
| Installation of interceptor drains upslope of works to divert any surface water away from turbine construction area; |
| Use of experienced geotechnical staff for site investigation;                                                        |
| Use of experienced contractors and trained operators to carry out the work;                                          |
| Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.                  |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |



# APPENDIX D CALCULATED FOS FOR PEAT SLOPES ON SITE

| С                       | alculate         | ed FoS o         | f Natur    | al Peat Slo              | pes for Ard              | derroo \                  | Wind Farm (Ur                              | ndrained Ana       | lysis)            |
|-------------------------|------------------|------------------|------------|--------------------------|--------------------------|---------------------------|--------------------------------------------|--------------------|-------------------|
| Turbine<br>No./Waypoint | Easting          | Northing         | Slope      | Undrained shear strength | Bulk unit weight of Peat | Depth of In-<br>situ Peat | Surcharge Equivalent Placed Fill Depth (m) | Factor of Safety f | or Load Condition |
| No./ Waypoint           |                  |                  |            |                          |                          |                           |                                            | a 1111 (a)         | - " (-)           |
|                         |                  |                  | β (deg)    | c <sub>u</sub> (kPa)     | γ (kN/m³)                | (m)                       | Condition (2)                              | Condition (1)      | Condition (2)     |
| T1<br>T2                | 112712<br>113460 | 235902<br>235727 | 3          | 6                        | 10<br>10                 | 0.9<br>1.3                | 1.9<br>2.3                                 | 12.76<br>8.83      | 6.04<br>4.99      |
| T3                      | 114228           | 235747           | 10         | 6                        | 10                       | 0.9                       | 1.9                                        | 3.90               | 1.85              |
| T4<br>T5                | 112219<br>112881 | 235006<br>235297 | 6<br>4     | 6                        | 10<br>10                 | 1.5<br>0.7                | 2.5<br>1.7                                 | 3.85<br>12.32      | 2.31<br>5.07      |
| T6<br>T7                | 113486<br>111632 | 235115<br>234350 | 2          | 6                        | 10<br>10                 | 0.9<br>2.0                | 1.9<br>3.0                                 | 19.11<br>8.60      | 9.05<br>5.73      |
| T8                      | 112295           | 234380           | 4          | 6                        | 10                       | 0.7                       | 1.7                                        | 12.32              | 5.07              |
| T9<br>T10               | 112950<br>113625 | 234335<br>234507 | 2          | 6                        | 10<br>10                 | 0.9<br>1.5                | 1.9<br>2.5                                 | 19.11<br>11.47     | 9.05<br>6.88      |
| T11                     | 114300           | 234700           | 2          | 6                        | 10                       | 1.1                       | 2.1                                        | 15.64              | 8.19              |
| T12<br>T13              | 111118<br>111858 | 233704<br>233787 | 2          | 6                        | 10<br>10                 | 1.2<br>3.7                | 2.2<br>4.7                                 | 7.19<br>4.65       | 3.92<br>3.66      |
| T14                     | 112547           | 233828           | 2          | 6                        | 10                       | 3.5                       | 4.5                                        | 4.92               | 3.82              |
| T15<br>T16              | 113400<br>111146 | 233770<br>233160 | 1          | 6                        | 10<br>10                 | 1.2                       | 2.2<br>2.6                                 | 14.34<br>21.49     | 7.82<br>13.22     |
| T17<br>T18              | 112270<br>113412 | 233254<br>233258 | 2<br>7     | 6                        | 10<br>10                 | 1.7<br>1.6                | 2.7<br>2.6                                 | 10.12<br>3.10      | 6.37<br>1.91      |
| T19                     | 114099           | 233365           | 5          | 6                        | 10                       | 0.8                       | 1.8                                        | 8.64               | 3.84              |
| T20<br>T21              | 111206<br>111996 | 232296<br>232611 | 2          | 6                        | 10<br>10                 | 3.4<br>1.7                | 4.4<br>2.7                                 | 5.06<br>10.12      | 3.91<br>6.37      |
| T22                     | 112637           | 232775           | 2          | 6                        | 10                       | 2.8                       | 3.8                                        | 6.14               | 4.53              |
| T23<br>T24              | 110573<br>111208 | 231801<br>231589 | 3          | 6                        | 10<br>10                 | 1.2                       | 2.2<br>2.3                                 | 14.34<br>8.83      | 7.82<br>4.99      |
| T25<br>SUB              | 111778<br>113896 | 231971<br>234938 | 4<br>8     | 6                        | 10<br>10                 | 2.1<br>0.5                | 3.1<br>1.5                                 | 4.11<br>8.71       | 2.78<br>2.90      |
| TCC1                    | 114456           | 235280           | 3          | 6                        | 10                       | 1.5                       | 2.5                                        | 7.65               | 4.59              |
| TCC2<br>MM              | 112688<br>114327 | 234471<br>234996 | 5<br>1     | 6                        | 10<br>10                 | 2.0<br>2.5                | 3.0<br>3.5                                 | 3.46<br>13.75      | 2.30<br>9.82      |
| T1 - SS                 | 111208           | 231589           | 2.9        | 6                        | 10                       | 1.3                       | 2.3                                        | 9.25               | 5.23              |
| T5 - SS<br>T6 - SS      | 111778<br>111205 | 231971<br>232239 | 7.9        | 6                        | 10<br>10                 | 2.1<br>1.5                | 3.1<br>2.5                                 | 6.51<br>2.95       | 4.41<br>1.77      |
| T8 - SS                 | 112818           | 234520           | 0.5        | 6                        | 10                       | 2.0                       | 3.0                                        | 33.34              | 22.22             |
| T10 -SS<br>T15 - SS     | 114228<br>112506 | 235747<br>233911 | 9.8<br>0.7 | 6<br>6                   | 10<br>10                 | 0.9<br>3.4                | 1.9<br>4.4                                 | 3.99<br>13.58      | 1.89<br>10.49     |
| T17 - SS<br>T18 - SS    | 110573<br>111589 | 231801<br>234513 | 2.2        | 6                        | 10<br>10                 | 1.2<br>2.3                | 2.2<br>3.3                                 | 12.84<br>6.70      | 7.00<br>4.67      |
| T19 - SS                | 112216           | 234499           | 4.6        | 6                        | 10                       | 2.0                       | 3.0                                        | 3.73               | 2.49              |
| T20 - SS<br>T21 - SS    | 112616<br>112332 | 232751<br>233255 | 2.9<br>0.6 | 6                        | 10<br>10                 | 2.0<br>1.6                | 3.0<br>2.6                                 | 5.90<br>35.81      | 3.93<br>22.04     |
| T22 - SS                | 111224           | 233665           | 3.7        | 6                        | 10                       | 1.0                       | 2.0                                        | 9.41               | 4.71              |
| T23 - SS<br>T24 - SS    | 114099<br>113688 | 233365<br>232694 | 4.9<br>1.0 | 6                        | 10<br>10                 | 0.8<br>5.9                | 1.8<br>6.9                                 | 8.89<br>5.98       | 3.95<br>5.12      |
| MET - SS<br>WP002       | 114332<br>114262 | 234946<br>235159 | 0.1<br>2.5 | 6                        | 10<br>10                 | 2.5<br>3.6                | 3.5<br>4.6                                 | 120.00<br>3.80     | 85.71<br>2.97     |
| WP003                   | 114153           | 235069           | 3.7        | 6                        | 10                       | 0.4                       | 1.4                                        | 23.17              | 6.62              |
| WP004<br>WP005          | 114156<br>114156 | 235075<br>235076 | 3.7        | 6                        | 10<br>10                 | 0.7<br>1.8                | 1.7<br>2.8                                 | 13.24<br>5.15      | 5.45<br>3.31      |
| WP006                   | 114062           | 234982           | 1.8        | 6                        | 10                       | 0.3                       | 1.3                                        | 64.58              | 14.90             |
| WP007<br>WP008          | 114006<br>113882 | 234935<br>234850 | 5.4<br>8.8 | 6                        | 10<br>10                 | 0.3                       | 1.3<br>1.7                                 | 21.24<br>5.70      | 4.90<br>2.35      |
| WP009<br>WP010          | 113791<br>113625 | 234808<br>234761 | 7.7<br>2.7 | 6                        | 10<br>10                 | 0.4                       | 1.4<br>1.3                                 | 11.23<br>41.76     | 3.21<br>9.64      |
| WP013                   | 113104           | 234707           | 9.3        | 6                        | 10                       | 0.4                       | 1.4                                        | 9.45               | 2.70              |
| WP014<br>WP015          | 113103<br>112712 | 234707<br>234581 | 9.1        | 6                        | 10<br>10                 | 0.2<br>1.6                | 1.2<br>2.6                                 | 19.23<br>6.60      | 3.21<br>4.06      |
| WP016<br>WP017          | 112641<br>112555 | 234604<br>234636 | 4.5<br>5.3 | 6                        | 10<br>10                 | 0.5<br>0.3                | 1.5<br>1.3                                 | 15.28<br>21.92     | 5.09<br>5.06      |
| WP018                   | 112514           | 234653           | 6.9        | 6                        | 10                       | 1.7                       | 2.7                                        | 2.96               | 1.86              |
| WP019<br>WP020          | 112326<br>112305 | 234645<br>234649 | 4.6<br>2.1 | 6                        | 10<br>10                 | 1.2                       | 2.2                                        | 6.29<br>13.53      | 3.43<br>7.38      |
| WP021                   | 112160           | 234617           | 1.1        | 6                        | 10                       | 4.5                       | 5.5                                        | 7.02               | 5.74              |
| WP022<br>WP023          | 112123<br>112113 | 234626<br>234622 | 0.8        | 6                        | 10<br>10                 | 2.0<br>0.5                | 3.0<br>1.5                                 | 21.43<br>85.73     | 14.29<br>28.58    |
| WP024<br>WP025          | 112060<br>111928 | 234615<br>234599 | 3.4<br>1.1 | 6                        | 10<br>10                 | 1.1<br>2.4                | 2.1<br>3.4                                 | 9.12<br>13.16      | 4.78<br>9.29      |
| WP026                   | 111928           | 234599           | 1.1        | 6                        | 10                       | 2.6                       | 3.6                                        | 12.15              | 8.78              |
| WP027<br>WP028          | 111846<br>111749 | 234588<br>234580 | 3.0        | 6                        | 10<br>10                 | 0.7<br>2.7                | 1.7<br>3.7                                 | 20.94<br>4.29      | 8.62<br>3.13      |
| WP029                   | 111506           | 234531           | 2.5        | 6                        | 10                       | 2.3                       | 3.3                                        | 6.08               | 4.24              |
| WP030<br>WP031          | 111560<br>111316 | 234554<br>234486 | 2.6<br>0.6 | 6                        | 10<br>10                 | 2.7<br>1.2                | 3.7<br>2.2                                 | 4.95<br>47.75      | 3.61<br>26.05     |
| WP032<br>WP033          | 111349<br>112655 | 234498<br>234492 | 2.3<br>3.3 | 6                        | 10<br>10                 | 1.0<br>2.0                | 2.0<br>3.0                                 | 15.02<br>5.28      | 7.51<br>3.52      |
| WP034                   | 112638           | 234434           | 1.1        | 6                        | 10                       | 3.1                       | 4.1                                        | 10.19              | 7.70              |
| WP035<br>WP036          | 112582<br>112581 | 234256<br>234208 | 2.2        | 6                        | 10<br>10                 | 1.6<br>2.0                | 2.6<br>3.0                                 | 9.63<br>7.91       | 5.93<br>5.27      |
| WP037                   | 112594           | 233995           | 2.1        | 6                        | 10                       | 0.5                       | 1.5                                        | 32.48              | 10.83             |
| WP038<br>WP039          | 112567<br>112413 | 233929<br>233807 | 1.1<br>0.9 | 6                        | 10<br>10                 | 2.0<br>1.5                | 3.0<br>2.5                                 | 15.01<br>26.67     | 10.00<br>16.00    |
| WP040<br>WP041          | 112333<br>112296 | 233721<br>233654 | 1.1<br>2.9 | 6                        | 10<br>10                 | 3.3<br>3.8                | 4.3<br>4.8                                 | 9.09<br>3.10       | 6.98<br>2.46      |
| WP042                   | 112295           | 233513           | 2.0        | 6                        | 10                       | 2.6                       | 3.6                                        | 6.60               | 4.77              |
| WP043<br>WP044          | 112296<br>112317 | 233468<br>233354 | 1.2<br>0.6 | 6                        | 10<br>10                 | 2.2                       | 3.2<br>3.2                                 | 12.99<br>26.05     | 8.93<br>17.91     |
| WP045                   | 112327           | 233319           | 0.6        | 6                        | 10                       | 3.3                       | 4.3                                        | 17.36              | 13.33             |
| WP046<br>WP047          | 112356<br>112356 | 233853<br>233854 | 0.5<br>0.5 | 6                        | 10<br>10                 | 3.8<br>1.6                | 4.8<br>2.6                                 | 17.55<br>41.67     | 13.89<br>25.64    |
| WP048<br>WP049          | 112327<br>112211 | 233921<br>234050 | 1.4<br>4.1 | 6                        | 10<br>10                 | 2.5<br>3.2                | 3.5<br>4.2                                 | 10.01<br>2.66      | 7.15<br>2.02      |
| WP050                   | 112027           | 234004           | 0.6        | 6                        | 10                       | 4.1                       | 5.1                                        | 14.64              | 11.77             |
| WP053<br>WP054          | 112381<br>112387 | 233084<br>233039 | 2.5<br>1.8 | 6                        | 10<br>10                 | 1.5<br>2.9                | 2.5<br>3.9                                 | 9.32<br>6.47       | 5.59<br>4.81      |
| WP055                   | 112416           | 232900           | 1.5        | 6                        | 10                       | 3.0                       | 4.0                                        | 7.70               | 5.77              |
| WP056<br>WP057          | 112422<br>112471 | 232856<br>232777 | 0.2<br>2.9 | 6                        | 10<br>10                 | 2.4                       | 3.4<br>3.4                                 | 62.50<br>4.91      | 44.12<br>3.47     |
| WP058                   | 112509           | 232745           | 2.9        | 6                        | 10                       | 0.8                       | 1.8                                        | 14.74              | 6.55              |
| WP059<br>WP060          | 112672<br>112714 | 232698<br>232688 | 0.7<br>0.9 | 6                        | 10<br>10                 | 2.6<br>3.3                | 3.6<br>4.3                                 | 17.75<br>12.12     | 12.82<br>9.30     |
| WP061<br>WP062          | 112853<br>112900 | 232702<br>232716 | 2.6<br>1.5 | 6                        | 10<br>10                 | 0.9<br>0.4                | 1.9<br>1.4                                 | 14.52<br>57.73     | 6.88<br>16.49     |
| WP065                   | 113198           | 232743           | 3.0        | 6                        | 10                       | 2.6                       | 3.6                                        | 4.37               | 3.15              |
| WP066<br>WP067          | 113216<br>113371 | 232739<br>232727 | 1.7<br>3.1 | 6                        | 10<br>10                 | 3.3<br>4.7                | 4.3<br>5.7                                 | 6.27<br>2.37       | 4.82<br>1.96      |
| WP068                   | 113416           | 232727           | 5.0        | 6                        | 10                       | 0.3                       | 1.3                                        | 23.16              | 5.35              |

| С                | alculat                              | ed FoS o         | f Natur           | al Peat Slo              | es for Ard               | derroo \          | Wind Farm (Ur                              | ndrained Analysis) |                    |  |  |
|------------------|--------------------------------------|------------------|-------------------|--------------------------|--------------------------|-------------------|--------------------------------------------|--------------------|--------------------|--|--|
| Turbine          | Easting                              | Northing         | Slope             | Undrained shear strength | Bulk unit weight of Peat | Depth of In-      | Surcharge Equivalent Placed Fill Depth (m) |                    | for Load Condition |  |  |
| No./Waypoint     |                                      |                  |                   | ,                        | _                        |                   |                                            |                    |                    |  |  |
|                  |                                      |                  | β (deg)           | c <sub>u</sub> (kPa)     | γ (kN/m³)                | (m)               | Condition (2)                              | Condition (1)      | Condition (2)      |  |  |
| WP069<br>WP071   | 113417<br>113824                     | 232705<br>232701 | 3.0<br>5.1        | 6                        | 10<br>10                 | 7.2<br>0.5        | 8.2<br>1.5                                 | 1.59<br>13.44      | 1.40<br>4.48       |  |  |
| WP072            | 113863                               | 232788           | 0.3               | 6                        | 10                       | 3.1               | 4.1                                        | 38.71              | 29.27              |  |  |
| WP073<br>WP074   | 113859<br>113829                     | 232845<br>233013 | 4.2<br>3.8        | 6                        | 10<br>10                 | 1.0               | 5.0<br>2.0                                 | 2.07<br>9.00       | 1.65<br>4.50       |  |  |
| WP075<br>WP076   | 113829<br>113807                     | 233014<br>233060 | 3.8<br>3.1        | 6                        | 10<br>10                 | 1.5<br>1.0        | 2.5<br>2.0                                 | 6.00<br>10.94      | 3.60<br>5.47       |  |  |
| WP077            | 113783                               | 233197           | 3.5               | 6                        | 10                       | 1.2               | 2.2                                        | 8.10               | 4.42               |  |  |
| WP078<br>WP079   | 113840<br>113921                     | 233328<br>233350 | 3.3<br>1.3        | 6                        | 10<br>10                 | 0.5<br>1.2        | 1.5<br>2.2                                 | 21.12<br>22.74     | 7.04<br>12.40      |  |  |
| WP080            | 114016<br>114035                     | 233381<br>233377 | 3.1<br>4.2        | 6                        | 10<br>10                 | 3.7               | 4.7<br>2.5                                 | 2.96<br>5.44       | 2.33<br>3.26       |  |  |
| WP081<br>WP082   | 113740                               | 233377           | 3.3               | 6                        | 10                       | 1.5<br>2.0        | 3.0                                        | 5.44               | 3.52               |  |  |
| WP083<br>WP084   | 113714<br>113696                     | 233446<br>233559 | 1.8<br>2.2        | 6                        | 10<br>10                 | 0.3<br>1.1        | 1.3<br>2.1                                 | 64.58<br>14.01     | 14.90<br>7.34      |  |  |
| WP085            | 113680                               | 233603           | 0.7               | 6                        | 10                       | 2.6               | 3.6                                        | 17.75              | 12.82              |  |  |
| WP086<br>WP087   | 113664<br>113663                     | 233718<br>233719 | 1.7               | 6                        | 10<br>10                 | 3.1<br>1.5        | 4.1<br>2.5                                 | 6.68<br>13.80      | 5.05<br>8.28       |  |  |
| WP088<br>WP089   | 113631<br>113609                     | 233809<br>233836 | 2.9<br>0.6        | 6                        | 10<br>10                 | 0.8<br>6.0        | 1.8<br>7.0                                 | 14.74<br>9.55      | 6.55<br>8.19       |  |  |
| WP090            | 113346                               | 234093           | 1.8               | 6                        | 10                       | 3.0               | 4.0                                        | 6.46               | 4.84               |  |  |
| WP091<br>WP092   | 113348<br>114403                     | 234136<br>235333 | 2.8<br>3.3        | 6                        | 10<br>10                 | 0.3               | 3.0<br>1.3                                 | 6.14<br>35.20      | 4.09<br>8.12       |  |  |
| WP093            | 114403                               | 235343           | 3.3               | 6                        | 10                       | 0.2               | 1.2                                        | 52.80              | 8.80               |  |  |
| WP094<br>WP095   | 114342<br>114252                     | 235527<br>235788 | 7.5<br>5.3        | 6                        | 10<br>10                 | 0.4               | 1.4<br>1.3                                 | 11.65<br>21.69     | 3.33<br>5.01       |  |  |
| WP096<br>WP097   | 114260<br>114334                     | 235843<br>235997 | 4.9<br>6.1        | 6                        | 10<br>10                 | 0.5<br>0.1        | 1.5<br>1.1                                 | 14.22<br>56.72     | 4.74<br>5.16       |  |  |
| WP098            | 114333                               | 235993           | 5.8               | 6                        | 10                       | 0.3               | 1.3                                        | 20.00              | 4.62               |  |  |
| WP099<br>WP100   | 114447<br>114448                     | 236154<br>236171 | 6.7<br>6.7        | 6                        | 10<br>10                 | 0.1               | 1.1<br>1.2                                 | 51.78<br>25.89     | 4.71<br>4.32       |  |  |
| WP102<br>WP109   | 114533<br>114052                     | 236328<br>235513 | 8.4               | 6                        | 10                       | No peat re        | corded at location                         | 2.32               | 1.49               |  |  |
| WP120            | 112921                               | 235449           | 8.6               | 6                        | 10                       | 0.1               | 1.1                                        | 40.39              | 3.67               |  |  |
| WP123<br>WP143   | 112640<br>110834                     | 235652<br>233607 | 8.3<br>0.7        | 6                        | 10<br>10                 | 1.2<br>3.6        | 2.2<br>4.6                                 | 3.50<br>12.82      | 1.91<br>10.04      |  |  |
| WP144            | 110893                               | 233592           | 0.7               | 6                        | 10                       | 3.9               | 4.9                                        | 11.84              | 9.42               |  |  |
| WP145<br>WP146   | 111057<br>111093                     | 233527<br>233539 | 2.4<br>0.6        | 6                        | 10<br>10                 | 3.1<br>1.7        | 4.1<br>2.7                                 | 4.62<br>33.71      | 3.49<br>21.22      |  |  |
| WP148<br>WP149   | 111244                               | 233626           | 3.1<br>0.9        | 6                        | 10<br>10                 | 2.2<br>1.6        | 3.2<br>2.6                                 | 5.07<br>23.44      | 3.48<br>14.43      |  |  |
| WP149<br>WP150   | 111256<br>111432                     | 233589<br>233522 | 1.0               | 6                        | 10                       | 2.4               | 3.4                                        | 13.89              | 9.81               |  |  |
| WP151<br>WP157   | 111412<br>111572                     | 233477<br>233394 | 1.2<br>2.3        | 6                        | 10<br>10                 | 2.3<br>0.8        | 3.3<br>1.8                                 | 12.43<br>18.32     | 8.66<br>8.14       |  |  |
| WP158            | 111571                               | 233393           | 2.3               | 6                        | 10                       | 0.9               | 1.9                                        | 16.29              | 7.72               |  |  |
| WP159<br>WP160   | 111623<br>111790                     | 233363<br>233341 | 2.7<br>0.7        | 6                        | 10<br>10                 | 0.3               | 5.1<br>1.3                                 | 3.12<br>153.87     | 2.51<br>35.51      |  |  |
| WP161<br>WP162   | 111928<br>111925                     | 233309<br>233211 | 2.3<br>2.1        | 6<br>6                   | 10<br>10                 | 0.1<br>0.4        | 1.1<br>1.4                                 | 150.24<br>40.60    | 13.66<br>11.60     |  |  |
| WP164            | 111898                               | 232994           | 3.3               | 6                        | 10                       | 1.2               | 2.2                                        | 8.65               | 4.72               |  |  |
| WP165<br>WP166   | 111905<br>111951                     | 232851<br>232703 | 2.1<br>0.6        | 6                        | 10<br>10                 | 2.7               | 1.1<br>3.7                                 | 162.38<br>21.22    | 14.76<br>15.49     |  |  |
| WP169            | 110890                               | 231999           | 2.3               | 6                        | 10                       | 3.0               | 4.0                                        | 4.89               | 3.66               |  |  |
| WP170<br>WP171   | 110932<br>111089                     | 232089<br>232161 | 1.4<br>0.7        | 6                        | 10<br>10                 | 2.7<br>1.2        | 3.7<br>2.2                                 | 9.26<br>41.67      | 6.76<br>22.73      |  |  |
| WP173<br>WP174   | 111012<br>111012                     | 231848<br>231844 | 0.8               | 6                        | 10<br>10                 | 2.7<br>3.5        | 3.7<br>4.5                                 | 15.88<br>13.19     | 11.59<br>10.26     |  |  |
| WP175            | 111275                               | 231742           | 3.0               | 6                        | 10                       | 0.9               | 1.9                                        | 12.61              | 5.98               |  |  |
| WP176<br>WP177   | 111362<br>111438                     | 231763<br>231741 | 2.0<br>1.5        | 6                        | 10<br>10                 | 2.7<br>3.9        | 3.7<br>4.9                                 | 6.36<br>5.92       | 4.64<br>4.71       |  |  |
| WP178            | 111575                               | 231831<br>231886 | 1.3<br>0.6        | 6                        | 10                       | 5.8               | 6.8                                        | 4.70               | 4.01<br>9.52       |  |  |
| WP179<br>B21     | 111718<br>112990                     | 231886           | 0.6               | 6                        | 10                       | 5.3<br>No peat re | 6.3<br>ecorded at location                 | 11.32              | 9.52               |  |  |
| B22<br>B24       | 112837<br>112926                     | 234545<br>234654 |                   |                          |                          |                   | corded at location                         |                    |                    |  |  |
| E3               | 114437                               | 235331           | 4.5               | 6                        | 10                       | 0.3               | 1.3                                        | 25.47              | 5.88               |  |  |
| E95<br>P100      | 110639<br>111743                     | 233690<br>232215 | 2.3               | 6                        | 10                       | No peat re<br>3.1 | ecorded at location<br>4.1                 | 4.85               | 3.66               |  |  |
| P77<br>P79       | 113369<br>113382                     | 234055<br>233996 | 1.1<br>1.8        | 6                        | 10<br>10                 | 4.2<br>3.1        | 5.2<br>4.1                                 | 7.52<br>6.25       | 6.08<br>4.73       |  |  |
| P87              | 113663                               | 233688           | 1.7               | 6                        | 10                       | 3.7               | 4.7                                        | 5.60               | 4.41               |  |  |
| P90<br>P92       | 111836<br>111793                     | 232487<br>232445 | 2.6<br>1.6        | 6                        | 10<br>10                 | 1.2<br>1.5        | 2.2<br>2.5                                 | 11.13<br>14.30     | 6.07<br>8.58       |  |  |
| P94<br>SUB12     | 111768<br>114286                     | 232391<br>235190 | 1.4<br>4.9        | 6                        | 10<br>10                 | 0.9<br>3.5        | 1.9<br>4.5                                 | 27.79<br>2.01      | 13.17<br>1.56      |  |  |
| SUB21            | 113079                               | 234691           | 8.4               | 6                        | 10                       | 0.3               | 1.3                                        | 13.81              | 3.19               |  |  |
| SUB24<br>MKOS2   | 113006<br>110578                     | 234640<br>231756 | 8.7<br>2.3        | 6                        | 10<br>10                 | 1.0               | 1.4<br>2.0                                 | 10.03<br>15.02     | 2.87<br>7.51       |  |  |
| MKOS3            | 110562                               | 231756           | 1.3               | 6                        | 10                       | 1.0               | 2.0                                        | 26.10              | 13.05              |  |  |
| MKOS4<br>MKOS5   | 110556<br>110573                     | 231790<br>231843 | 1.3<br>1.8        | 6                        | 10<br>10                 | 1.0<br>1.0        | 2.0<br>2.0                                 | 26.10<br>18.77     | 13.05<br>9.38      |  |  |
| MKOS6<br>MKOS7   | 111800<br>110933                     | 231946<br>232017 | 2.1<br>4.1        | 6<br>6                   | 10<br>10                 | 1.0<br>1.0        | 2.0<br>2.0                                 | 16.24<br>8.49      | 8.12<br>4.25       |  |  |
| MKOS10           | 111179                               | 232244           | 2.4               | 6                        | 10                       | 1.1               | 2.1                                        | 13.01              | 6.81               |  |  |
| MKOS11<br>MKOS12 | 111783<br>110590                     | 232029<br>231869 | 1.3               | 6                        | 10<br>10                 | 1.2               | 2.2<br>2.3                                 | 21.75<br>14.00     | 11.86<br>7.91      |  |  |
| MKOS13<br>MKOS14 | 110598<br>111232                     | 231922           | 0.9<br>2.1        | 6                        | 10<br>10                 | 1.3<br>1.3        | 2.3<br>2.3                                 | 28.85<br>12.84     | 16.31<br>7.26      |  |  |
| MKOS15           | 110553                               | 232257<br>231772 | 1.3               | 6                        | 10                       | 1.4               | 2.4                                        | 18.64              | 10.88              |  |  |
| MKOS16<br>MKOS17 | 111228<br>110596                     | 231578<br>231786 | 2.5<br>2.3        | 6                        | 10<br>10                 | 1.4<br>1.6        | 2.4                                        | 9.99<br>9.39       | 5.82<br>5.78       |  |  |
| MKOS18           | 110603                               | 231945           | 0.9               | 6                        | 10                       | 1.6               | 2.6                                        | 23.44              | 14.43              |  |  |
| MKOS21<br>MKOS23 | 110611<br>111071                     | 231802<br>232193 | 1.6               | 6                        | 10<br>10                 | 1.8               | 2.8<br>2.8                                 | 11.91<br>18.52     | 7.66<br>11.91      |  |  |
| MKOS24           | 110582                               | 231875           | 1.1               | 6                        | 10                       | 2.0               | 3.0                                        | 15.01              | 10.00              |  |  |
| MKOS28<br>MKOS31 | 111091<br>111272                     | 232219<br>232282 | 1.0               | 6                        | 10<br>10                 | 2.2               | 3.2<br>3.3                                 | 16.05<br>14.50     | 11.03<br>10.10     |  |  |
| MKOS33<br>MKOS34 | 111253<br>110912                     | 232269<br>232003 | 1.7<br>2.5        | 6                        | 10<br>10                 | 2.4<br>2.5        | 3.4<br>3.5                                 | 8.34<br>5.47       | 5.89<br>3.90       |  |  |
|                  | 1110312                              | 232132           | 0.6               | 6                        | 10                       | 2.5               | 3.5                                        | 22.92              | 16.37              |  |  |
| MKOS35           | 1                                    |                  | 0.0               |                          | 10                       | 2.7               | 3.7                                        | 13.89              | 10.14              |  |  |
| MKOS35<br>MKOS39 | 110610<br>110633                     | 231970<br>232045 | 0.9<br>1.6        | 6                        | 10                       | 2.7               |                                            | 7.94               | 5.80               |  |  |
| MKOS35           | 110610<br>110633<br>111790<br>111778 |                  | 1.6<br>3.1<br>2.1 | 6<br>6<br>6              |                          |                   | 3.7<br>3.7<br>3.7                          |                    |                    |  |  |

|                         | <u>alculat</u>   | ed FoS o         | f Natur    | al Peat Slo                 |                          |                           | Wind Farm (Un                                 |                  |                   |
|-------------------------|------------------|------------------|------------|-----------------------------|--------------------------|---------------------------|-----------------------------------------------|------------------|-------------------|
| Turbine<br>No./Waypoint | Easting          | Northing         | Slope      | Undrained shear<br>strength | Bulk unit weight of Peat | Depth of In-<br>situ Peat | Surcharge Equivalent<br>Placed Fill Depth (m) | Factor of Safety | or Load Condition |
| ,,                      |                  |                  | β (deg)    | c <sub>u</sub> (kPa)        |                          | (m)                       | Condition (2)                                 | Condition (1)    | Condition (2)     |
|                         | l                | 1                |            |                             | γ (kN/m³)                |                           |                                               |                  |                   |
| MKOS52<br>MKOS54        | 111019<br>110625 | 232108<br>232022 | 0.6<br>1.2 | 6                           | 10<br>10                 | 3.0                       | 4.0<br>4.1                                    | 19.10<br>9.22    | 14.32<br>6.97     |
| MKOS55                  | 110640           | 232069           | 3.5        | 6                           | 10                       | 3.1                       | 4.1                                           | 3.13             | 2.37              |
| MKOS58<br>MKOS61        | 111516<br>111766 | 231710<br>231918 | 1.8<br>3.0 | 6                           | 10<br>10                 | 3.3<br>3.5                | 4.3<br>4.5                                    | 5.69<br>3.31     | 4.36<br>2.57      |
| MKOS63                  | 110618           | 231828           | 1.5        | 6                           | 10                       | 3.6                       | 4.6                                           | 6.41             | 5.02              |
| MKOS64<br>MKOS66        | 111509<br>111776 | 231691<br>232149 | 1.3        | 6                           | 10<br>10                 | 3.6<br>3.6                | 4.6<br>4.6                                    | 7.58<br>7.58     | 5.93<br>5.93      |
| MKOS67                  | 111120           | 232234           | 1.1        | 6                           | 10                       | 3.6                       | 4.6                                           | 8.34             | 6.52              |
| MKOS72<br>MKOS75        | 111791<br>111796 | 232124<br>232054 | 1.8        | 6                           | 10<br>10                 | 3.7<br>0.4                | 4.7<br>1.4                                    | 5.24<br>60.04    | 4.12<br>17.15     |
| MKOS76                  | 110619           | 231996           | 1.5        | 6                           | 10                       | 4.0                       | 5.0                                           | 5.56             | 4.45              |
| MKOS77<br>MKOS82        | 111742<br>111671 | 231907<br>231853 | 0.2        | 6                           | 10<br>10                 | 4.0<br>4.5                | 5.0<br>5.5                                    | 50.00<br>13.33   | 40.00<br>10.91    |
| MKOS83                  | 111721           | 231891           | 0.6        | 6                           | 10                       | 4.5                       | 5.5                                           | 13.33            | 10.91             |
| MKOS85<br>MKOS88        | 111651<br>111697 | 231844<br>231874 | 1.7<br>0.6 | 6                           | 10<br>10                 | 5.4<br>5.5                | 6.4<br>6.5                                    | 3.71<br>10.91    | 3.13<br>9.23      |
| MKOS89                  | 110566           | 231815           | 2.2        | 6                           | 10                       | 0.6                       | 1.6                                           | 26.35            | 9.88              |
| MKOS90<br>MKOS91        | 110966<br>111046 | 232040<br>232153 | 3.8<br>0.6 | 6                           | 10<br>10                 | 0.8                       | 1.8<br>1.8                                    | 11.24<br>71.62   | 5.00<br>31.83     |
| MKOS94                  | 110583           | 231770           | 2.3        | 6                           | 10                       | 0.9                       | 1.9                                           | 16.69            | 7.91              |
| MKOS97<br>MKOS99        | 111784<br>111210 | 231956<br>231592 | 2.5        | 6                           | 10                       | 0.9<br>No peat re         | 1.9<br>ecorded at location                    | 15.53            | 7.36              |
| MKOS100                 | 111778           | 231972           |            |                             |                          | No peat re                | corded at location                            |                  |                   |
| MKOS101<br>MKOS102      | 111794<br>110980 | 232086<br>232061 |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS103                 | 111000           | 232082           |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS104<br>MKOS108      | 111209<br>111895 | 232246<br>232929 |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS109                 | 111266           | 233322           | 0.9        | 6                           | 10                       | 2.0                       | 3.0                                           | 20.00            | 13.34             |
| MKOS110<br>MKOS111      | 111289<br>111312 | 233343<br>233371 | 0.9<br>1.0 | 6                           | 10<br>10                 | 3.0<br>2.0                | 4.0<br>3.0                                    | 13.34<br>16.67   | 10.00<br>11.11    |
| MKOS112                 | 111324           | 233401           | 1.4        | 6                           | 10                       | 2.0                       | 3.0                                           | 12.01            | 8.01              |
| MKOS113<br>MKOS114      | 111336<br>111346 | 233427<br>233457 | 2.7<br>4.4 | 6                           | 10<br>10                 | 2.0                       | 3.0<br>3.0                                    | 6.40<br>3.92     | 4.26<br>2.61      |
| MKOS114<br>MKOS116      | 111346           | 233457           | 3.8        | 6                           | 10                       | 2.0                       | 2.1                                           | 8.30             | 4.35              |
| MKOS117                 | 112153           | 235029           | 4.2        | 6                           | 10                       | 1.1                       | 2.1                                           | 7.51<br>29.42    | 3.93              |
| MKOS118<br>MKOS119      | 111351<br>111362 | 233489<br>233517 | 1.0<br>2.1 | 6                           | 10<br>10                 | 1.2                       | 2.2                                           | 13.91            | 16.05<br>7.59     |
| MKOS120                 | 111149           | 233161           | 0.7        | 6                           | 10                       | 1.2                       | 2.2                                           | 41.67            | 22.73             |
| MKOS121<br>MKOS122      | 112254<br>112228 | 234566<br>234561 | 4.0<br>3.1 | 6                           | 10<br>10                 | 1.6<br>1.6                | 2.6<br>2.6                                    | 5.38<br>6.84     | 3.31<br>4.21      |
| MKOS123                 | 112158           | 235010           | 3.7        | 6                           | 10                       | 1.7                       | 2.7                                           | 5.45             | 3.43              |
| MKOS126<br>MKOS127      | 111576<br>111588 | 234532<br>234521 | 2.5<br>1.7 | 6                           | 10<br>10                 | 1.8                       | 2.8                                           | 7.77<br>11.50    | 4.99<br>7.40      |
| MKOS128                 | 111360           | 233388           | 1.9        | 6                           | 10                       | 1.8                       | 2.8                                           | 9.82             | 6.31              |
| MKOS129<br>MKOS130      | 111326<br>111161 | 233353<br>233185 | 1.6<br>0.7 | 6                           | 10<br>10                 | 1.8                       | 2.8<br>2.8                                    | 11.91<br>27.78   | 7.66<br>17.86     |
| MKOS134                 | 111227           | 233615           | 2.9        | 6                           | 10                       | 2.1                       | 3.1                                           | 5.73             | 3.88              |
| MKOS135<br>MKOS136      | 111221<br>111250 | 233265<br>233303 | 1.0<br>0.9 | 6                           | 10<br>10                 | 2.1                       | 3.1<br>3.1                                    | 15.88<br>19.05   | 10.76<br>12.91    |
| MKOS138                 | 112234           | 234588           | 1.9        | 6                           | 10                       | 2.2                       | 3.2                                           | 8.03             | 5.52              |
| MKOS140<br>MKOS141      | 111184<br>111171 | 233217<br>233201 | 1.7<br>0.8 | 6                           | 10<br>10                 | 2.2                       | 3.2<br>3.2                                    | 9.41<br>19.48    | 6.47<br>13.40     |
| MKOS141                 | 112134           | 234582           | 0.8        | 6                           | 10                       | 2.3                       | 3.3                                           | 19.05            | 13.19             |
| MKOS144                 | 111345           | 233375           | 2.0        | 6                           | 10                       | 2.3                       | 3.3                                           | 7.46             | 5.20              |
| MKOS147<br>MKOS148      | 112165<br>112210 | 234566<br>234551 | 1.8<br>3.0 | 6                           | 10<br>10                 | 2.7                       | 3.7<br>3.7                                    | 7.18<br>4.29     | 5.24<br>3.13      |
| MKOS149                 | 112239           | 234600           | 2.2        | 6                           | 10                       | 2.7                       | 3.7                                           | 5.71             | 4.16              |
| MKOS150<br>MKOS151      | 111571<br>111249 | 234588<br>233274 | 2.4<br>0.9 | 6                           | 10<br>10                 | 2.7                       | 3.7<br>3.7                                    | 5.30<br>13.89    | 3.87<br>10.14     |
| MKOS152                 | 112135           | 234607           | 0.8        | 6                           | 10                       | 2.7                       | 3.7                                           | 15.88            | 11.59             |
| MKOS154<br>MKOS155      | 111202<br>112145 | 233248<br>234649 | 1.3        | 6                           | 10<br>10                 | 2.8                       | 3.8<br>3.8                                    | 9.32<br>9.74     | 6.87<br>7.18      |
| MKOS156                 | 112203           | 234652           | 1.1        | 6                           | 10                       | 2.9                       | 3.9                                           | 10.89            | 8.10              |
| MKOS157<br>MKOS158      | 112160<br>112234 | 234980<br>234622 | 4.4<br>1.1 | 6                           | 10<br>10                 | 0.3<br>3.0                | 1.3<br>4.0                                    | 26.13<br>10.53   | 6.03<br>7.90      |
| MKOS159                 | 111214           | 233226           | 1.5        | 6                           | 10                       | 3.0                       | 4.0                                           | 7.70             | 5.77              |
| MKOS160<br>MKOS161      | 112149<br>112181 | 234667<br>234558 | 2.7<br>3.0 | 6                           | 10<br>10                 | 3.0                       | 4.0<br>4.2                                    | 4.18<br>3.55     | 3.13<br>2.70      |
| MKOS162                 | 111265           | 233291           | 0.9        | 6                           | 10                       | 3.2                       | 4.2                                           | 11.72            | 8.93              |
| MKOS167<br>MKOS169      | 111306<br>111287 | 233335<br>233306 | 1.4        | 6                           | 10<br>10                 | 3.6<br>3.7                | 4.6<br>4.7                                    | 6.67<br>7.37     | 5.22<br>5.81      |
| MKOS171                 | 112210           | 234664           | 1.0        | 6                           | 10                       | 3.8                       | 4.8                                           | 8.77             | 6.95              |
| MKOS172<br>MKOS173      | 111237<br>112056 | 233250<br>233992 | 1.1<br>0.7 | 6                           | 10<br>10                 | 3.8<br>4.0                | 4.8<br>5.0                                    | 8.31<br>11.54    | 6.58<br>9.23      |
| MKOS174                 | 112150           | 234718           | 3.7        | 6                           | 10                       | 0.4                       | 1.4                                           | 23.53            | 6.72              |
| MKOS175<br>MKOS176      | 112043<br>112016 | 233977<br>233954 | 0.7<br>0.7 | 6                           | 10<br>10                 | 4.5<br>4.5                | 5.5<br>5.5                                    | 10.26<br>10.26   | 8.39<br>8.39      |
| MKOS176<br>MKOS177      | 111916           | 233954           | 1.8        | 6                           | 10                       | 4.5                       | 5.5                                           | 4.31             | 3.52              |
| MKOS179                 | 111612           | 234517           | 1.6        | 6                           | 10                       | 4.5                       | 5.5                                           | 4.77             | 3.90              |
| MKOS182<br>MKOS185      | 111999<br>111986 | 233933<br>234690 | 0.1        | 6                           | 10<br>10                 | 5.4<br>0.8                | 6.4<br>1.8                                    | 111.11<br>187.50 | 93.75<br>83.33    |
| MKOS187                 | 112147           | 234692           | 3.4        | 6                           | 10                       | 0.8                       | 1.8                                           | 12.55            | 5.58              |
| MKOS188<br>MKOS190      | 111975<br>111226 | 234932<br>233657 | 6.6<br>3.7 | 6                           | 10<br>10                 | 0.9                       | 1.9<br>1.9                                    | 5.87<br>10.30    | 2.78<br>4.88      |
| MKOS194                 | 112161           | 234746           |            |                             |                          | No peat re                | ecorded at location                           |                  |                   |
| MKOS200<br>MKOS201      | 111965<br>112004 | 234889<br>234889 |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS203                 | 112100           | 234656           |            |                             |                          | No peat re                | corded at location                            |                  |                   |
| MKOS204<br>MKOS205      | 112100<br>112088 | 234631<br>234615 |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS206                 | 111571           | 234524           |            |                             |                          | No peat re                | corded at location                            |                  |                   |
| MKOS207<br>MKOS208      | 111585<br>111569 | 234514<br>234561 |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS209                 | 111533           | 234573           |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS210<br>MKOS211      | 111524<br>111222 | 234556           |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS211<br>MKOS212      | 111222<br>112151 | 233667<br>234726 |            |                             |                          |                           | corded at location<br>corded at location      |                  |                   |
| MKOS213                 | 112162           | 234781           |            |                             |                          | No peat re                | corded at location                            |                  |                   |
| MKOS214<br>MKOS215      | 112158<br>112158 | 234807<br>234847 |            |                             |                          |                           | corded at location                            |                  |                   |
| MKOS216<br>MKOS217      | 112145           | 234901           |            |                             |                          | No peat re                | corded at location                            |                  |                   |
| 0.08 (15.27.7           | 112160           | 234954<br>234566 | 2.9        | 6                           | 10                       | No peat re                | ecorded at location<br>2.7                    | 6.94             | 4.37              |

| MK05231<br>MK05232<br>MK05235<br>MK05242<br>MK05244<br>MK05245<br>MK05250<br>MK05250<br>MK05253<br>MK05253 | Easting          | Northing         | Slope       | Undrained shear strength | Bulk unit weight<br>of Peat | Depth of In-      | Surcharge Equivalent Placed Fill Depth (m) | Factor of Safety i | for Load Condition |
|------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------|--------------------------|-----------------------------|-------------------|--------------------------------------------|--------------------|--------------------|
| MKOS232<br>MKOS235<br>MKOS242<br>MKOS244<br>MKOS245<br>MKOS250<br>MKOS253                                  |                  |                  |             |                          |                             | situ Peat         | Placeu Fili Deptil (III)                   |                    |                    |
| MKOS232<br>MKOS235<br>MKOS242<br>MKOS244<br>MKOS245<br>MKOS250<br>MKOS253                                  |                  |                  | β (deg)     | c <sub>u</sub> (kPa)     | γ (kN/m³)                   | (m)               | Condition (2)                              | Condition (1)      | Condition (2)      |
| MKOS232<br>MKOS235<br>MKOS242<br>MKOS244<br>MKOS245<br>MKOS250<br>MKOS253                                  |                  | 222202           |             |                          |                             |                   |                                            |                    |                    |
| MKOS242<br>MKOS244<br>MKOS245<br>MKOS250<br>MKOS253                                                        | 113382           | 233202<br>234668 | 1.9<br>0.2  | 6                        | 10<br>10                    | 2.0               | 3.0<br>3.0                                 | 9.10<br>100.00     | 6.07<br>66.67      |
| MKOS244<br>MKOS245<br>MKOS250<br>MKOS253                                                                   | 113419           | 234639           | 0.1         | 6                        | 10                          | 2.7               | 3.7                                        | 111.11<br>15.15    | 81.08<br>11.86     |
| MKOS250<br>MKOS253                                                                                         | 111955<br>111977 | 233992<br>233988 | 0.6         | 6                        | 10<br>10                    | 3.6<br>4.1        | 4.6<br>5.1                                 | 14.64              | 11.86              |
| MKOS253                                                                                                    | 113408           | 234693           | 3.5         | 6                        | 10                          | 4.3<br>0.9        | 5.3<br>1.9                                 | 2.26<br>14.22      | 1.83               |
| MKOS256                                                                                                    | 113396<br>113415 | 234565<br>234577 | 2.7         | 6                        | 10                          |                   | ecorded at location                        | 14.22              | 6.73               |
|                                                                                                            | 112627           | 234357           | 0.7         | 6                        | 10                          | 1.6               | 2.6                                        | 31.25              | 19.23              |
| MKOS257<br>MKOS258                                                                                         | 112647<br>112665 | 234352<br>234352 | 0.7         | 6                        | 10<br>10                    | 1.9<br>1.7        | 2.9<br>2.7                                 | 24.30<br>29.42     | 15.92<br>18.52     |
| MKOS259                                                                                                    | 112677           | 234366           |             |                          |                             |                   | corded at location                         |                    |                    |
| MKOS265<br>MKOS276                                                                                         | 112699<br>112890 | 234363<br>234252 | 2.5         | 6                        | 10                          | 1.6               | ecorded at location<br>2.6                 | 8.54               | 5.25               |
| MKOS277                                                                                                    | 112873           | 234278           | 2.6         | 6                        | 10                          | 1.0               | 2.0                                        | 13.07              | 6.54               |
| MKOS278<br>MKOS282                                                                                         | 112838<br>113020 | 234302<br>235312 | 2.1<br>5.1  | 6                        | 10<br>10                    | 1.0               | 2.0<br>2.0                                 | 16.69<br>6.72      | 8.34<br>3.36       |
| MKOS283                                                                                                    | 112766           | 235426           | 7.7         | 6                        | 10                          | 1.0               | 2.0                                        | 4.49               | 2.25               |
| MKOS284<br>MKOS286                                                                                         | 112690<br>113721 | 235498<br>233433 | 8.7<br>1.8  | 6                        | 10<br>10                    | 1.0               | 2.0                                        | 4.01<br>18.77      | 2.01<br>9.38       |
| MKOS288                                                                                                    | 112844           | 232685           | 2.1         | 6                        | 10                          | 1.1               | 2.1                                        | 15.47              | 7.92               |
| MKOS289<br>MKOS290                                                                                         | 113696<br>113706 | 233558<br>233508 | 2.2         | 6                        | 10<br>10                    | 1.1               | 2.1<br>2.1                                 | 14.01<br>12.15     | 7.34<br>6.36       |
| MKOS292                                                                                                    | 112865           | 235341           | 3.8         | 6                        | 10                          | 1.2               | 2.2                                        | 7.50               | 4.09               |
| MKOS293<br>MKOS294                                                                                         | 112669<br>114112 | 235522<br>235679 | 7.6         | 6                        | 10<br>10                    | 1.2               | 2.2                                        | 3.47<br>3.53       | 1.90<br>2.00       |
| MKOS298                                                                                                    | 112608           | 235600           | 4.8         | 6                        | 10                          | 1.4               | 2.4                                        | 5.14               | 3.00               |
| MKOS305<br>MKOS306                                                                                         | 112737<br>113688 | 235445<br>233580 | 8.0<br>0.7  | 6                        | 10<br>10                    | 1.8               | 2.8<br>2.8                                 | 2.43<br>25.65      | 1.56<br>16.49      |
| MKOS308                                                                                                    | 112850           | 232671           | 2.1         | 6                        | 10                          | 1.8               | 2.8                                        | 9.02               | 5.80               |
| MKOS312<br>MKOS320                                                                                         | 112629<br>112854 | 235569<br>232651 | 5.6<br>0.1  | 6                        | 10<br>10                    | 1.9<br>2.0        | 2.9<br>3.0                                 | 3.25<br>300.00     | 2.13               |
| MKOS321                                                                                                    | 113384           | 232579           | 6.5         | 6                        | 10                          | 0.2               | 1.2                                        | 26.66              | 4.44               |
| MKOS322<br>MKOS329                                                                                         | 113392<br>113637 | 232516<br>233615 | 4.0<br>1.0  | 6                        | 10<br>10                    | 0.2<br>2.3        | 1.2<br>3.3                                 | 43.07<br>14.50     | 7.18<br>10.10      |
| MKOS331                                                                                                    | 112353           | 233244           | 1.3         | 6                        | 10                          | 2.4               | 3.4                                        | 10.88              | 7.68               |
| MKOS335<br>MKOS337                                                                                         | 112945<br>113388 | 235309<br>232625 | 5.0<br>6.6  | 6                        | 10<br>10                    | 2.5<br>0.3        | 3.5<br>1.3                                 | 2.78<br>21.15      | 1.99<br>4.23       |
| MKOS337<br>MKOS338                                                                                         | 113386           | 232558           | 5.9         | 6                        | 10                          | 0.3               | 1.3                                        | 23.33              | 4.67               |
| MKOS341<br>MKOS342                                                                                         | 112790<br>112391 | 235412<br>232796 | 6.8<br>3.4  | 6                        | 10<br>10                    | 2.6<br>2.6        | 3.6<br>3.6                                 | 1.96<br>3.92       | 1.42<br>2.83       |
| MKOS344                                                                                                    | 112391           | 235315           | 5.3         | 6                        | 10                          | 2.7               | 3.7                                        | 2.44               | 1.78               |
| MKOS348                                                                                                    | 113727           | 233403           | 1.4         | 6                        | 10                          | 2.8               | 3.8                                        | 8.58               | 6.32               |
| MKOS349<br>MKOS350                                                                                         | 112578<br>112869 | 233800<br>235360 | 0.8<br>4.5  | 6                        | 10<br>10                    | 2.9<br>3.0        | 3.9<br>4.0                                 | 14.78<br>2.58      | 10.99<br>1.93      |
| MKOS351                                                                                                    | 113703           | 233526           | 2.8         | 6                        | 10                          | 3.0               | 4.0                                        | 4.09               | 3.07               |
| MKOS354<br>MKOS355                                                                                         | 113736<br>113830 | 233371<br>232852 | 3.7         | 6                        | 10<br>10                    | 3.2<br>3.2        | 4.2<br>4.2                                 | 4.94<br>2.90       | 3.76<br>2.21       |
| MKOS359                                                                                                    | 112480           | 233812           | 0.2         | 6                        | 10                          | 3.4               | 4.4                                        | 58.82              | 45.45              |
| MKOS360<br>MKOS361                                                                                         | 112419<br>112499 | 232798<br>233847 | 0.1<br>1.4  | 6                        | 10<br>10                    | 3.4               | 4.4<br>4.4                                 | 88.24<br>7.06      | 68.18<br>5.46      |
| MKOS362                                                                                                    | 113744           | 233351           | 2.1         | 6                        | 10                          | 3.4               | 4.4                                        | 4.78               | 3.69               |
| MKOS363<br>MKOS364                                                                                         | 113830<br>112543 | 232850<br>233816 | 3.7<br>0.7  | 6                        | 10<br>10                    | 3.4<br>3.5        | 4.4<br>4.5                                 | 2.73<br>14.29      | 2.11<br>11.11      |
| MKOS370                                                                                                    | 113853           | 232847           | 4.2         | 6                        | 10                          | 3.5               | 4.5                                        | 2.36               | 1.84               |
| MKOS371<br>MKOS372                                                                                         | 113815<br>112484 | 232862<br>233822 | 2.9<br>1.0  | 6                        | 10<br>10                    | 3.5<br>3.5        | 4.5<br>4.5                                 | 3.37<br>9.53       | 2.62<br>7.41       |
| MKOS374                                                                                                    | 112532           | 233845           | 2.3         | 6                        | 10                          | 3.5               | 4.5                                        | 4.29               | 3.34               |
| MKOS376<br>MKOS377                                                                                         | 112593<br>113704 | 233779<br>232706 | 1.2         | 6                        | 10<br>10                    | 3.5<br>3.5        | 4.5<br>4.5                                 | 8.17<br>8.17       | 6.35<br>6.35       |
| MKOS379                                                                                                    | 113709           | 232679           | 3.1         | 6                        | 10                          | 3.5               | 4.5                                        | 3.13               | 2.43               |
| MKOS381<br>MKOS383                                                                                         | 112408<br>112397 | 232783<br>232819 | 0.2         | 6                        | 10<br>10                    | 3.5<br>3.5        | 4.5<br>4.5                                 | 57.14<br>57.14     | 44.44<br>44.44     |
| MKOS384                                                                                                    | 113650           | 233593           | 0.9         | 6                        | 10                          | 3.5               | 4.5                                        | 10.72              | 8.34               |
| MKOS385<br>MKOS386                                                                                         | 112371<br>113666 | 233253<br>233598 | 1.4<br>0.8  | 6                        | 10<br>10                    | 3.5<br>3.5        | 4.5<br>4.5                                 | 6.86<br>12.25      | 5.34<br>9.53       |
| MKOS398                                                                                                    | 113394           | 232648           | 6.3         | 6                        | 10                          | 0.4               | 1.4                                        | 13.68              | 3.91               |
| MKOS399<br>MKOS401                                                                                         | 113382<br>114234 | 232538<br>235756 | 5.8<br>8.3  | 6                        | 10<br>10                    | 0.4<br>0.5        | 1.4<br>1.5                                 | 15.00<br>8.45      | 4.29<br>2.82       |
| MKOS401<br>MKOS402                                                                                         | 114234           | 235/56           | 8.3<br>7.8  | 6                        | 10                          | 0.5               | 1.5                                        | 8.92               | 2.82               |
| MKOS403                                                                                                    | 113713           | 233485<br>235735 | 0.6         | 6                        | 10                          | 0.5               | 1.5                                        | 114.60             | 38.20              |
| MKOS406<br>MKOS407                                                                                         | 114207<br>114172 | 235735<br>235718 | 10.9<br>9.3 | 6                        | 10<br>10                    | 0.6               | 1.6<br>1.6                                 | 5.40<br>6.30       | 2.03<br>2.36       |
| MKOS408                                                                                                    | 113716           | 233461           | 0.6         | 6                        | 10                          | 0.6               | 1.6                                        | 95.50              | 35.81              |
| MKOS410<br>MKOS411                                                                                         | 113377<br>112860 | 232597<br>235342 | 6.6<br>4.4  | 6                        | 10<br>10                    | 0.6               | 1.6<br>1.7                                 | 8.81<br>11.20      | 3.30<br>4.61       |
| MKOS413                                                                                                    | 112982           | 235315           | 5.4         | 6                        | 10                          | 0.8               | 1.8                                        | 8.05               | 3.58               |
| MKOS414<br>MKOS417                                                                                         | 112841<br>114191 | 235367<br>235728 | 7.4<br>10.6 | 6                        | 10<br>10                    | 0.8               | 1.8<br>1.9                                 | 5.87<br>3.69       | 2.61<br>1.75       |
| MKOS419                                                                                                    | 112651           | 235542           | 7.5         | 6                        | 10                          | 0.9               | 1.9                                        | 5.18               | 2.45               |
| MKOS420<br>MKOS425                                                                                         | 113832<br>113403 | 233188<br>232706 | 4.5<br>4.2  | 6                        | 10<br>10                    | 0.9               | 1.9<br>1.9                                 | 8.60<br>9.18       | 4.07<br>4.35       |
| MKOS427                                                                                                    | 113394           | 232681           | 5.7         | 6                        | 10                          | 0.9               | 1.9                                        | 6.80               | 3.22               |
| MKOS428<br>MKOS429                                                                                         | 113817<br>114228 | 233183<br>235747 | 4.7         | 6                        | 10                          | 0.9<br>No peat re | 1.9<br>ecorded at location                 | 8.09               | 3.83               |
| MKOS430                                                                                                    | 114126           | 235691           |             |                          |                             | No peat re        | corded at location                         |                    |                    |
| MKOS432<br>MKOS433                                                                                         | 114090<br>112920 | 235654<br>235323 |             |                          |                             |                   | corded at location                         |                    |                    |
| MKOS435                                                                                                    | 112817           | 235398           |             |                          |                             | No peat re        | corded at location                         |                    |                    |
| MKOS436<br>MKOS437                                                                                         | 112714           | 235471           |             |                          |                             |                   | corded at location                         |                    |                    |
| MKOS437<br>MKOS442                                                                                         | 112593<br>114146 | 235622<br>235710 | 7.4         | 6                        | 10                          | 0.8               | ecorded at location<br>1.8                 | 5.91               | 2.63               |
| MKOS444                                                                                                    | 112959           | 235300           | 5.3         | 6                        | 10                          | 1.9               | 2.9                                        | 3.46               | 2.27               |
| MKOS446<br>MKOS448                                                                                         | 113629<br>112465 | 233646<br>233831 | 1.4<br>0.9  | 6                        | 10<br>10                    | 2.8               | 3.8<br>3.9                                 | 8.93<br>12.93      | 6.58<br>9.62       |
| MKOS450                                                                                                    | 112382           | 233261           | 1.3         | 6                        | 10                          | 4.0               | 5.0                                        | 6.82               | 5.46               |
| MKOS455<br>MKOS456                                                                                         | 113323<br>113326 | 234736<br>234727 | 7.1<br>5.5  | 6                        | 10<br>10                    | 0.5<br>1.8        | 1.5<br>2.8                                 | 9.75<br>3.50       | 3.25<br>2.25       |
| MKOS484                                                                                                    | 112650           | 234487           | 3.4         | 6                        | 10                          | 1.1               | 2.1                                        | 9.28               | 4.86               |
| MKOS485<br>MKOS488                                                                                         | 112672<br>112405 | 234491<br>234638 | 6.2         | 6                        | 10                          | No peat re<br>0.1 | ecorded at location                        | 56.20              | 5.11               |
| MKOS489                                                                                                    | 112375           | 234625           |             |                          |                             | No peat re        | corded at location                         |                    |                    |
| MKOS490<br>MKOS491                                                                                         | 112326<br>112307 | 234620<br>234591 | 3.3<br>2.9  | 6                        | 10<br>10                    | 1.2<br>3.8        | 2.2<br>4.8                                 | 8.65<br>3.10       | 4.72<br>2.46       |

| Turbine            | Easting          | Northing         | Slope      | Undrained shear      | Bulk unit weight | Depth of In- | Surcharge Equivalent  | Factor of Safety 1 | or Load Condition |
|--------------------|------------------|------------------|------------|----------------------|------------------|--------------|-----------------------|--------------------|-------------------|
| No./Waypoint       |                  |                  |            | strength             | of Peat          | situ Peat    | Placed Fill Depth (m) | •                  |                   |
|                    |                  |                  | β (deg)    | c <sub>u</sub> (kPa) | γ (kN/m³)        | (m)          | Condition (2)         | Condition (1)      | Condition (2)     |
| MKOS495            | 112302           | 234599           | 2.9        | 6                    | 10               | 2.5          | 3.5                   | 4.72               | 3.37              |
| MKOS496            | 112504           | 233898           | 0.8        | 6                    | 10               | 2.3          | 3.3                   | 18.64              | 12.99             |
| MKOS497            | 112498           | 233908           | 0.8        | 6                    | 10               | 1.8          | 2.8                   | 23.81              | 15.31             |
| MKOS498            | 112510           | 233907           | 0.7        | 6                    | 10               | 3.2          | 4.2                   | 14.43              | 10.99             |
| MKOS499            | 112525           | 233919           | 0.7        | 6                    | 10               | 3.3          | 4.3                   | 13.99              | 10.74             |
| MKOS500            | 112496           | 233893           | 0.2        | 6                    | 10               | 2.3          | 3.3                   | 86.96              | 60.61             |
| MKOS501            | 112482           | 233882           | 0.2        | 6                    | 10               | 2.0          | 3.0                   | 100.00             | 66.67             |
| MKOS502            | 112084           | 234029           | 1.8        | 6                    | 10               | 1.9          | 2.9                   | 9.88               | 6.47              |
| MKOS503            | 112071<br>112376 | 234027<br>233034 | 1.8<br>1.8 | 6                    | 10<br>10         | 3.5<br>3.2   | 4.5<br>4.2            | 5.36<br>5.87       | 4.17<br>4.47      |
| MKOS511<br>MKOS512 | 112376           | 233052           | 2.2        | 6                    | 10               | 3.4          | 4.2                   | 4.53               | 3.50              |
| MKOS512            | 112373           | 233032           | 2.7        | 6                    | 10               | 1.9          | 2.9                   | 6.59               | 4.32              |
| MKOS514            | 112369           | 233072           | 2.5        | 6                    | 10               | 0.1          | 1.1                   | 136.63             | 12.42             |
| MKOS515            | 112361           | 233119           | 2.9        | 6                    | 10               | 0.2          | 1.2                   | 60.15              | 10.03             |
| MKOS516            | 112405           | 233135           | 0.2        | 6                    | 10               | 1.6          | 2.6                   | 125.00             | 76.92             |
| MKOS517            | 112392           | 233146           | 0.2        | 6                    | 10               | 2.8          | 3.8                   | 71.43              | 52.63             |
| MKOS518            | 112394           | 233168           | 1.0        | 6                    | 10               | 1.9          | 2.9                   | 17.55              | 11.50             |
| MKOS519            | 112389           | 233189           | 1.0        | 6                    | 10               | 4.2          | 5.2                   | 7.94               | 6.41              |
| MKOS520            | 112383           | 233223           | 1.0        | 6                    | 10               | 3.9          | 4.9                   | 9.05               | 7.20              |
| MKOS521            | 112376           | 233240           | 1.3        | 6                    | 10               | 4.3          | 5.3                   | 6.07               | 4.92              |
| MKOS522            | 112345           | 233239           | 1.2        | 6                    | 10               | 1.4          | 2.4                   | 20.42              | 11.91             |
| MKOS523            | 112332           | 233255           | 0.6        | 6                    | 10               | 0.5          | 1.5                   | 114.60             | 38.20             |
| MKOS524            | 112323           | 233284           | 0.6        | 6                    | 10               | 2.4          | 3.4                   | 23.87              | 16.85             |
| MKOS525<br>MKOS526 | 112314<br>112366 | 233305<br>233319 | 0.6<br>1.4 | 6                    | 10<br>10         | 3.1<br>3.9   | 4.1<br>4.9            | 18.48<br>6.41      | 13.98<br>5.10     |
| MKOS526<br>MKOS527 | 112366           | 233319           | 0.9        | 6                    | 10               | 0.9          | 1.9                   | 41.68              | 19.74             |
| MKOS527            | 112642           | 232674           | 0.9        | 6                    | 10               | 1.6          | 2.6                   | 23.44              | 14.43             |
| MKOS528            | 112644           | 232663           | 0.9        | 6                    | 10               | 1.0          | 2.0                   | 33.34              | 18.19             |
| MKOS530            | 112635           | 232671           | 0.9        | 6                    | 10               | 1.0          | 2.0                   | 42.87              | 21.43             |
| MKOS531            | 113027           | 232745           | 2.2        | 6                    | 10               | 0.3          | 1.3                   | 52.71              | 12.16             |
| MKOS532            | 113027           | 232743           | 1.8        | 6                    | 10               | 1.7          | 2.7                   | 11.04              | 6.95              |
| MKOS533            | 113695           | 233474           | 0.6        | 6                    | 10               | 0.1          | 1.1                   | 573.00             | 52.09             |
| MKOS534            | 113679           | 233477           | 1.3        | 6                    | 10               | 1.0          | 2.0                   | 26.10              | 13.05             |
| MKOS539            | 113681           | 233513           | 2.6        | 6                    | 10               | 3.6          | 4.6                   | 3.71               | 2.90              |
| MKOS540            | 113690           | 233498           | 2.2        | 6                    | 10               | 3.5          | 4.5                   | 4.40               | 3.42              |
| MKOS541            | 113699           | 233483           | 0.6        | 6                    | 10               | 0.5          | 1.5                   | 114.60             | 38.20             |
| MKOS542            | 113812           | 233113           | 3.3        | 6                    | 10               | 2.4          | 3.4                   | 4.32               | 3.05              |
| MKOS543            | 113819           | 233129           | 3.4        | 6                    | 10               | 1.1          | 2.1                   | 9.28               | 4.86              |
| MKOS544            | 113841           | 233145           | 4.4        | 6                    | 10               | 0.4          | 1.4                   | 19.60              | 5.60              |
| MKOS563            | 113572           | 232671           | 1.3        | 6                    | 10               | 3.8          | 4.8                   | 6.87               | 5.44              |
| MKOS564            | 113559           | 232647           | 1.5        | 6                    | 10               | 4.5          | 5.5                   | 5.13               | 4.20              |
| MKOS566            | 113051           | 232714           | 1.8        | 6                    | 10               | 2.6          | 3.6                   | 7.45               | 5.38              |
| MKOS584            | 111146           | 233160           | 0.7        | 6                    | 10               | 1.5          | 2.5                   | 33.34              | 20.00             |
| MKOS585            | 111123           | 233122           | 0.9        | 6                    | 10               | 1.8          | 2.8                   | 22.23              | 14.29             |
| MKOS586            | 111115           | 233091           | 1.0        | 6                    | 10               | 2.8          | 3.8                   | 11.91              | 8.77              |
| MKOS587            | 111113           | 233052           | 1.3        | 6                    | 10               | 1.7          | 2.7                   | 16.05              | 10.11             |
| MKOS588<br>MKOS599 | 111121           | 233015           | 1.5        | 6                    | 10<br>10         | 1.4<br>0.9   | 2.4                   | 16.49              | 9.62              |
| MKOS600            | 112016<br>112017 | 232694<br>232667 | 2.5<br>1.5 | 6                    | 10               | 1.8          | 1.9<br>2.8            | 15.18<br>12.35     | 7.19<br>7.94      |
| MKOS601            | 112017           | 232636           | 1.0        | 6                    | 10               | 2.7          | 3.7                   | 13.08              | 9.54              |
| MKOS602            | 112006           | 232609           | 0.6        | 6                    | 10               | 1.0          | 2.0                   | 57.30              | 28.65             |
| MKOS603            | 111986           | 232574           | 0.6        | 6                    | 10               | 0.5          | 1.5                   | 114.60             | 38.20             |
| MKOS604            | 111971           | 232547           | 3.0        | 6                    | 10               | 1.0          | 2.0                   | 11.35              | 5.68              |
| MKOS605            | 111951           | 232530           | 3.0        | 6                    | 10               | 0.7          | 1.7                   | 16.53              | 6.81              |
| MKOS606            | 111921           | 232515           | 2.8        | 6                    | 10               | 1.1          | 2.1                   | 11.16              | 5.84              |
| MKOS607            | 111899           | 232537           | 1.3        | 6                    | 10               | 2.1          | 3.1                   | 12.43              | 8.42              |
| MKOS608            | 111881           | 232547           | 1.0        | 6                    | 10               | 2.8          | 3.8                   | 11.91              | 8.77              |
| MKOS611            | 111566           | 231850           | 0.6        | 6                    | 10               | 4.5          | 5.5                   | 12.73              | 10.42             |
| MKOS612            | 111547           | 231844           | 0.6        | 6                    | 10               | 4.5          | 5.5                   | 12.73              | 10.42             |
| MKOS613            | 111585           | 231866           | 1.8        | 6                    | 10               | 4.3          | 5.3                   | 4.36               | 3.54              |
| MKOS619            | 111213           | 231717           | 3.1        | 6                    | 10               | 1.9          | 2.9                   | 5.87               | 3.84              |
| MKOS620            | 111215           | 231701           | 2.4        | 6                    | 10               | 1.4          | 2.4                   | 10.22              | 5.96              |
| MKOS621            | 111210           | 231674           | 2.5        | 6                    | 10               | 2.2          | 3.2                   | 6.35               | 4.37              |
| MKOS622            | 111223           | 231668           | 2.7        | 6                    | 10               | 1.1          | 2.1                   | 11.39              | 5.97              |
| MKOS623            | 111202           | 231644           | 1.4        | 6                    | 10               | 0.2          | 1.2                   | 120.08             | 20.01             |
| MKOS624<br>MKOS625 | 111200<br>111197 | 231614           | 1.7        | 6                    | 10               | 0.2          | 1.2                   | 100.09             | 16.68             |
| MKOS625<br>MKOS626 |                  | 231597           | 20         | e                    | 10               |              | ecorded at location   | 20.46              | 7.67              |
| MKOS626<br>MKOS627 | 111212<br>111190 | 231589<br>231533 | 2.8        | 6                    | 10               | 0.6<br>2.4   | 1.6<br>3.4            | 20.46<br>7.15      | 7.67<br>5.05      |
| MKOS627<br>MKOS634 | 111190           | 231533           | 2.0        | Ü                    | 10               |              | ecorded at location   | 7.15               | 5.05              |
| MKOS635            | 112030           | 232680           | 1.8        | 6                    | 10               | 1.8          | 2.8                   | 10.76              | 6.92              |
| MKOS636            | 112039           | 232662           | 1.0        | 6                    | 10               | 2.8          | 3.8                   | 10.72              | 7.90              |
| MKOS637            | 112050           | 232638           | 1.0        | 6                    | 10               | 3.8          | 4.8                   | 8.77               | 6.95              |
| MKOS638            | 112050           | 232609           | 1.5        | 6                    | 10               | 2.7          | 3.7                   | 8.24               | 6.01              |
| MKOS642            | 112234           | 234525           |            |                      |                  |              | ecorded at location   |                    |                   |
| MKOS643            | 112224           | 234501           |            |                      |                  |              | ecorded at location   |                    |                   |
| MKOS644            | 113421           | 234695           | 3.2        | 6                    | 10               | 4.5          | 5.5                   | 2.39               | 1.95              |
| MKOS645            | 113416           | 234652           | 0.1        | 6                    | 10               | 3.2          | 4.2                   | 93.75              | 71.43             |
| MKOS646            | 113416           | 234582           | 0.1        | 6                    | 10               | 0.5          | 1.5                   | 600.00             | 200.00            |
| MKOS647            | 113443           | 234564           | 1.5        | 6                    | 10               | 1.9          | 2.9                   | 11.70              | 7.67              |
| MKOS648            | 113450           | 234541           | 1.4        | 6                    | 10               | 3.6          | 4.6                   | 6.95               | 5.44              |
| MKOS649            | 113444           | 234502           | 1.5        | 6                    | 10               | 4.1          | 5.1                   | 5.42               | 4.36              |
| MKOS650            | 113445           | 234470           | 1.8        | 6                    | 10               | 4.2          | 5.2                   | 4.61               | 3.73              |
| MKOS651            | 113440           | 234448           | 2.9        | 6                    | 10               | 3.8          | 4.8                   | 3.10               | 2.46              |
| MKOS652            | 113406           | 234421           | 1.4        | 6                    | 10               | 4.2          | 5.2                   | 5.72               | 4.62              |
| MKOS661            | 113341           | 234208           | 1.3        | 6                    | 10               | 3.5          | 4.5                   | 7.80               | 6.06              |
| MKOS662            | 113327           | 234170           | 1.9        | 6                    | 10               | 3.0          | 4.0                   | 6.07               | 4.55              |
| MKOS663            | 113331           | 234155           | 2.6        | 6                    | 10               | 2.6          | 3.6                   | 5.14               | 3.71              |
| MKOS664            | 113318           | 234127           | 3.4        | 6                    | 10               | 1.6          | 2.6                   | 6.27               | 3.86              |

| Turbine                 |                  |                  |            | Undrained shear      |           |                   | Wind Farm (Un                                 |                  | <u> </u>           |
|-------------------------|------------------|------------------|------------|----------------------|-----------|-------------------|-----------------------------------------------|------------------|--------------------|
| Turbine<br>No./Waypoint | Easting          | Northing         | Slope      | strength             | of Peat   | situ Peat         | Surcharge Equivalent<br>Placed Fill Depth (m) | Factor of Safety | for Load Condition |
|                         |                  |                  | β (deg)    | c <sub>u</sub> (kPa) | γ (kN/m³) | (m)               | Condition (2)                                 | Condition (1)    | Condition (2)      |
| MKOS666                 | 113361           | 234175           | 4.2        | 6                    | 10        | 1.1               | 2.1                                           | 7.41             | 3.88               |
| MKOS667<br>MKOS668      | 113373           | 234186<br>234225 | 2.7<br>3.5 | 6                    | 10<br>10  | 1.1<br>1.5        | 2.1<br>2.5                                    | 11.39<br>6.48    | 5.97<br>3.89       |
| MKOS669                 | 113398<br>113411 | 234225           | 3.3        | 6                    | 10        | 1.5               | 2.5                                           | 6.92             | 4.15               |
| MKOS670                 | 113424           | 234274           | 3.5        | 6                    | 10        | 0.9               | 1.9                                           | 10.97            | 5.20               |
| MKOS671<br>MKOS672      | 113439<br>113437 | 234300<br>234325 | 3.0        | 6                    | 10<br>10  | 1.1<br>1.7        | 2.1<br>2.7                                    | 10.32<br>6.11    | 5.41<br>3.84       |
| MKOS673                 | 113439           | 234362           | 2.2        | 6                    | 10        | 2.4               | 3.4                                           | 6.59             | 4.65               |
| MKOS674                 | 113438           | 234399<br>234426 | 4.2        | 6                    | 10        | 1.6               | 2.6                                           | 5.16             | 3.18               |
| MKOS675<br>MKOS687      | 113434<br>113683 | 233349           | 3.6<br>3.1 | 6                    | 10<br>10  | 1.4<br>1.7        | 2.4<br>2.7                                    | 6.83<br>6.44     | 3.98<br>4.05       |
| MKOS688                 | 113718           | 233351           | 3.1        | 6                    | 10        | 1.2               | 2.2                                           | 9.29             | 5.07               |
| MKOS689<br>MKOS690      | 113737<br>113750 | 233351<br>233328 | 2.2<br>3.1 | 6                    | 10<br>10  | 2.0<br>1.8        | 3.0<br>2.8                                    | 7.91<br>6.08     | 5.27<br>3.91       |
| MKOS691                 | 113736           | 233337           | 2.9        | 6                    | 10        | 1.6               | 2.6                                           | 7.37             | 4.54               |
| MKOS692                 | 113821           | 233357           | 3.0        | 6                    | 10        | 0.9               | 1.9                                           | 12.61            | 5.98               |
| MKOS693<br>MKOS694      | 113838<br>113882 | 233351<br>233347 | 2.3<br>1.2 | 6                    | 10<br>10  | 1.3<br>1.4        | 2.3<br>2.4                                    | 11.28<br>20.42   | 6.37<br>11.91      |
| MKOS695                 | 113908           | 233349           | 1.3        | 6                    | 10        | 1.0               | 2.0                                           | 27.29            | 13.64              |
| MKOS696<br>MKOS697      | 113931<br>113961 | 233360<br>233363 | 1.4        | 6                    | 10<br>10  | 1.4<br>2.7        | 2.4<br>3.7                                    | 17.15<br>8.89    | 10.01<br>6.49      |
| MKOS698                 | 114001           | 233378           | 2.7        | 6                    | 10        | 4.4               | 5.4                                           | 2.91             | 2.37               |
| MKOS699                 | 114038           | 233387           | 4.2        | 6                    | 10        | 1.6               | 2.6                                           | 5.10             | 3.14               |
| MKOS700<br>MKOS701      | 114072<br>114091 | 233379<br>233395 | 5.7<br>5.4 | 6                    | 10<br>10  | 0.8               | 1.8<br>1.9                                    | 7.65<br>7.08     | 3.40<br>3.35       |
| MKOS702                 | 114090           | 233418           | 6.3        | 6                    | 10        | 1.0               | 2.0                                           | 5.52             | 2.76               |
| MKOS703<br>MKOS704      | 111589<br>111583 | 234510<br>234512 | 2.2        | 6                    | 10        | 1.1               | 2.1 ecorded at location                       | 14.37            | 7.53               |
| MKOS704<br>MKOS705      | 111583           | 234512           | 1.6        | 6                    | 10        | 2.6               | 3.6                                           | 8.25             | 5.96               |
| MKOS706                 | 111608           | 234534           | 1.3        | 6                    | 10        | 2.5               | 3.5                                           | 10.44            | 7.46               |
| MKOS707<br>MKOS708      | 111627<br>112673 | 234541<br>234623 | 1.7<br>5.7 | 6                    | 10<br>10  | 2.8<br>0.4        | 3.8<br>1.4                                    | 7.15<br>15.15    | 5.27<br>4.33       |
| MKOS709                 | 112666           | 234633           | 7.2        | 6                    | 10        | 0.1               | 1.1                                           | 48.38            | 4.40               |
| MKOS726                 | 112950           | 235245           | 8.4        | 6                    | 10        | 1.9               | 2.9                                           | 2.19             | 1.44               |
| MKOS809<br>MKOS810      | 113893<br>113891 | 232760<br>232805 | 0.5<br>3.4 | 6                    | 10<br>10  | 4.5<br>4.5        | 5.5<br>5.5                                    | 16.67<br>2.23    | 13.64<br>1.82      |
| MKOS811                 | 113915           | 232796           | 3.3        | 6                    | 10        | 3.8               | 4.8                                           | 2.73             | 2.16               |
| MKOS832<br>MKOS835      | 113692<br>113745 | 232707<br>232652 | 1.0<br>5.0 | 6                    | 10<br>10  | 4.0<br>0.8        | 5.0<br>1.8                                    | 8.83<br>8.59     | 7.06<br>3.82       |
| MKOS836                 | 113743           | 232645           | 5.0        | 6                    | 10        | 1.2               | 2.2                                           | 5.73             | 3.12               |
| MKOS838                 | 113774           | 232647           | 4.1        | 6                    | 10        | 1.4               | 2.4                                           | 6.07             | 3.54               |
| MKOS839<br>MKOS845      | 113160<br>112601 | 232688<br>232720 | 3.1        | 6                    | 10        | 2.4<br>No neat re | 3.4 ecorded at location                       | 4.64             | 3.28               |
| MKOS846                 | 112608           | 232727           | 2.2        | 6                    | 10        | 0.9               | 1.9                                           | 17.12            | 8.11               |
| MKOS847                 | 112609           | 232733           | 3.0        | 6                    | 10        | 1.4               | 2.4<br>2.7                                    | 8.26<br>6.94     | 4.82<br>4.37       |
| MKOS848<br>MKOS849      | 112620<br>112627 | 232735<br>232743 | 2.9        | 6                    | 10<br>10  | 1.7<br>1.7        | 2.7                                           | 7.22             | 4.55               |
| MKOS850                 | 112620           | 232763           | 2.9        | 6                    | 10        | 1.7               | 2.7                                           | 7.08             | 4.46               |
| MKOS851                 | 111198<br>112702 | 231569<br>234554 | 3.0<br>3.8 | 6                    | 10<br>10  | 1.6<br>1.4        | 2.6<br>2.4                                    | 7.10<br>6.52     | 4.37<br>3.80       |
| T9<br>T10               | 112171           | 234406           | 2.3        | 6                    | 10        | 2.2               | 3.2                                           | 6.83             | 4.70               |
| T12                     | 112446           | 233855           | 1.1        | 6                    | 10        | 4.6               | 5.6                                           | 6.52             | 5.36               |
| WP 001<br>WP 002        | 114505<br>114518 | 235355<br>235342 | 3.1<br>2.5 | 6                    | 10<br>10  | 0.7<br>1.5        | 1.7<br>2.5                                    | 15.92<br>9.32    | 6.56<br>5.59       |
| WP 004                  | 114427           | 235304           | 4.9        | 6                    | 10        | 0.6               | 1.6                                           | 11.85            | 4.44               |
| WP 005                  | 114438           | 235272           | 3.7        | 6                    | 10        | 0.7               | 1.7                                           | 13.24            | 5.45               |
| WP 006<br>WP 007        | 113619<br>113622 | 234771<br>234804 | 2.4        | 6                    | 10<br>10  | 1.9<br>2.1        | 2.9<br>3.1                                    | 7.53<br>6.36     | 4.93<br>4.31       |
| WP 008                  | 113610           | 234803           | 2.3        | 6                    | 10        | 2.3               | 3.3                                           | 6.37             | 4.44               |
| WP 009<br>WP 010        | 113604<br>112594 | 234769<br>234098 | 2.5<br>0.9 | 6                    | 10<br>10  | 1.9<br>4.1        | 2.9<br>5.1                                    | 7.36<br>9.76     | 4.82<br>7.84       |
| WP 010<br>WP 011        | 112594           | 234098           | 0.9        | 6                    | 10        | 3.6               | 4.6                                           | 10.42            | 8.15               |
| WP 012                  | 113703           | 233470           | 0.6        | 6                    | 10        | 0.6               | 1.6                                           | 95.50            | 35.81              |
| WP 013<br>WP 014        | 113917<br>112135 | 233350<br>234605 | 1.3<br>0.8 | 6                    | 10<br>10  | 0.9<br>2.2        | 1.9<br>3.2                                    | 30.32<br>19.48   | 14.36<br>13.40     |
| WP 018                  | 110816           | 234056           | 1.3        | 6                    | 10        | 1.4               | 2.4                                           | 19.49            | 11.37              |
| WP 019<br>WP 020        | 110545<br>110365 | 233526<br>233353 | 8.6<br>5.8 | 6                    | 10<br>10  | 0.3<br>1.2        | 1.3<br>2.2                                    | 13.46<br>4.95    | 3.11<br>2.70       |
| WP 020<br>WP 021        | 110365           | 233353           | 2.9        | 6                    | 10        | 0.4               | 1.4                                           | 4.95<br>29.49    | 2.70<br>8.43       |
| WP 022                  | 110063           | 233101           | 3.1        | 6                    | 10        | 0.5               | 1.5                                           | 21.88            | 7.29               |
| WP 024<br>WP 025        | 109868<br>109895 | 232753<br>232667 | 5.5<br>3.0 | 6                    | 10<br>10  | 4.0<br>7.2        | 5.0<br>8.2                                    | 1.57<br>1.59     | 1.26<br>1.40       |
| WP 026                  | 109914           | 232310           | 1.8        | 6                    | 10        | 5.2               | 6.2                                           | 3.61             | 3.03               |
| WP 027                  | 110119           | 232316           | 1.3        | 6                    | 10        | 3.4               | 4.4                                           | 7.68             | 5.93               |
| WP 028<br>WP 029        | 110285<br>110395 | 232198<br>232169 | 1.1<br>2.4 | 6                    | 10<br>10  | 2.3<br>1.5        | 3.3<br>2.5                                    | 13.05<br>9.54    | 9.09<br>5.72       |
| WP 030                  | 109823           | 232366           | 6.4        | 6                    | 10        | 0.2               | 1.2                                           | 27.12            | 4.52               |
| WP 031<br>WP 032        | 109800<br>109858 | 232403<br>232424 | 7.6<br>4.2 | 6                    | 10<br>10  | 0.6<br>5.2        | 1.6<br>6.2                                    | 7.60<br>1.57     | 2.85<br>1.31       |
| WP 032                  | 110894           | 233589           | 0.7        | 6                    | 10        | 4.1               | 5.1                                           | 11.26            | 9.05               |
| WP 035                  | 111020           | 233516           | 1.7        | 6                    | 10        | 4.0               | 5.0                                           | 5.18             | 4.14               |
| WP 036<br>WP 039        | 111215<br>111873 | 233578<br>233332 | 0.9<br>1.1 | 6                    | 10<br>10  | 3.0<br>4.5        | 4.0<br>5.5                                    | 13.34<br>7.02    | 10.00<br>5.74      |
| WP 040                  | 111902           | 233230           | 1.4        | 6                    | 10        | 4.0               | 5.0                                           | 6.25             | 5.00               |
| WP 043                  | 110365           | 232142           | 1.5        | 6                    | 10        | 1.6               | 2.6                                           | 13.90            | 8.55               |
| WP 050<br>WP 051        | 110453<br>111252 | 232105<br>231719 | 1.3<br>3.5 | 6                    | 10<br>10  | 1.8<br>0.7        | 2.8<br>1.7                                    | 15.16<br>13.88   | 9.74<br>5.71       |
| WP 052                  | 111254           | 231671           | 3.4        | 6                    | 10        | 2.7               | 3.7                                           | 3.78             | 2.76               |
| S 24                    | 112603           | 234134           | 0.9        | 6                    | 10        | 3.4               | 4.4                                           | 11.03            | 8.52               |
| S2_4A<br>P22            | 112580<br>113707 | 234086<br>233389 | 0.9<br>1.5 | 6                    | 10<br>10  | 3.8<br>2.5        | 4.8<br>3.5                                    | 10.53<br>9.24    | 8.34<br>6.60       |
| P 13                    | 113848           | 233337           | 2.2        | 6                    | 10        | 0.7               | 1.7                                           | 22.59            | 9.30               |
| P1_3A<br>WP 013A        | 113839<br>113908 | 233376<br>233389 | 2.5<br>1.9 | 6                    | 10<br>10  | 0.9               | 1.9<br>1.8                                    | 15.18<br>22.08   | 7.19<br>9.82       |
| WP 013A<br>WP 014A      | 113908           | 233389           | 3.7        | 6                    | 10        | 0.8               | 1.6                                           | 22.08<br>15.45   | 9.82<br>5.79       |
| WP 032A                 | 109803           | 232447           | 8.9        | 6                    | 10        | 0.5               | 1.5                                           | 7.88             | 2.63               |
| R 48<br>WP 052A         | 110727           | 233640           | 0.5        | 6                    | 10        | 4.7               | 5.7                                           | 14.19            | 11.70              |
| VVP UDZA                | 111249           | 231621           | 2.9        | 6                    | 10        | 1.8               | 2.8                                           | 6.68<br>3.17     | 4.30               |

| C                | alculate         | ed FoS o         | f Natur      | al Peat Slo          | es for Ard       | derroo \     | Wind Farm (Ur                         | ndrained Ana     | lysis)             |
|------------------|------------------|------------------|--------------|----------------------|------------------|--------------|---------------------------------------|------------------|--------------------|
| Turbine          | Easting          | Northing         | Slope        | Undrained shear      | Bulk unit weight | Depth of In- | Surcharge Equivalent                  |                  | for Load Condition |
| No./Waypoint     |                  |                  | 0/1: 1       | strength             | of Peat          | situ Peat    | Placed Fill Depth (m)                 | Complete Lab     | Care Hate a feet   |
|                  |                  |                  | β (deg)      | c <sub>u</sub> (kPa) | γ (kN/m³)        | (m)          | Condition (2)                         | Condition (1)    | Condition (2)      |
| T27<br>T28       | 113486<br>113413 | 235115<br>234488 | 13.4         | 6                    | 10<br>10         | 1.0<br>4.0   | 2.0<br>5.0                            | 2.66<br>8.34     | 1.33<br>6.67       |
| T29              | 114356           | 234688           | 0.6          | 6                    | 10               | 0.7          | 1.7                                   | 81.86            | 33.71              |
| 31<br>32         | 113418<br>113420 | 234694<br>234644 | 3.2<br>0.1   | 6                    | 10<br>10         | 3.5<br>2.5   | 4.5<br>3.5                            | 3.07<br>120.00   | 2.39<br>85.71      |
| 33               | 113418           | 234594           | 0.1          | 6                    | 10               | 2.2          | 3.2                                   | 136.36           | 93.75              |
| 34<br>35         | 113443<br>113448 | 234560<br>234511 | 1.5          | 6                    | 10<br>10         | 3.3          | 3.0<br>4.3                            | 11.12<br>6.74    | 7.41<br>5.17       |
| 37               | 114358           | 235281           | 2.7          | 6                    | 10               | 0.6          | 1.6                                   | 20.88            | 7.83               |
| 38<br>39         | 114353<br>114348 | 235231<br>235181 | 3.8          | 6                    | 10<br>10         | 0.2<br>1.2   | 1.2<br>2.2                            | 44.98<br>8.36    | 7.50<br>4.56       |
| 40               | 114360           | 235133           | 4.5          | 6                    | 10               | 0.3          | 1.3                                   | 25.47            | 5.88               |
| 41<br>42         | 114365<br>114367 | 235083<br>235034 | 2.1<br>0.1   | 6                    | 10<br>10         | 0.4          | 1.4<br>1.1                            | 41.72<br>3000.01 | 11.92<br>272.73    |
| 43               | 114370           | 234984           | 1.7          | 6                    | 10               | 0.6          | 1.6                                   | 33.36            | 12.51              |
| 44<br>45         | 114371<br>114373 | 234934<br>234884 | 1.8          | 6                    | 10<br>10         | 0.2          | 1.2<br>1.5                            | 85.29<br>43.05   | 11.13<br>13.36     |
| 46               | 114375           | 234834           | 2.7          | 6                    | 10               | 0.5          | 1.5                                   | 27.84            | 8.64               |
| 47<br>48         | 114375<br>114375 | 234784<br>234734 | 3.8<br>2.6   | 6                    | 10<br>10         | 1.2<br>1.0   | 2.2<br>2.0                            | 7.50<br>13.07    | 4.09<br>6.54       |
| 49               | 114378           | 234687           | 1.9          | 6                    | 10               | 0.2          | 1.2                                   | 117.78           | 15.36              |
| 55<br>56         | 113802<br>113773 | 235326<br>235286 | 10.1<br>12.0 | 6                    | 10<br>10         | 0.7<br>0.1   | 1.7<br>1.1                            | 4.94<br>29.45    | 2.03<br>2.68       |
| 57               | 113737           | 235251           | 13.1         | 6                    | 10               | 0.2          | 1.2                                   | 13.57            | 2.26               |
| 58<br>59         | 113696<br>113654 | 235223<br>235196 | 11.3<br>10.9 | 6                    | 10<br>10         | 0.9<br>1.0   | 1.9<br>2.0                            | 3.69<br>3.24     | 1.69<br>1.62       |
| 60               | 113610           | 235172           | 11.9         | 6                    | 10               | 0.4          | 1.4                                   | 7.46             | 2.13               |
| 61<br>62         | 113567<br>113511 | 235147<br>235123 | 15.3<br>17.2 | 6                    | 10<br>10         | 0.2          | 1.2<br>1.3                            | 11.81<br>7.09    | 1.97<br>1.64       |
| PB1              | 114212           | 235875           | 1.8          | 6                    | 10               | 1.4          | 2.4                                   | 13.41            | 7.82               |
| PB4<br>WP004     | 114269<br>114251 | 235858<br>235902 | 4.1<br>2.0   | 6                    | 10<br>10         | 1.7<br>1.8   | 2.7<br>2.8                            | 4.93<br>9.54     | 3.10<br>6.13       |
| WP004<br>B1      | 114549           | 236392           | 0.6          | 6                    | 10               | 1.7          | 2.7                                   | 33.71            | 21.22              |
| 1 2              | 113693<br>113708 | 234794<br>234798 | 3.0<br>2.9   | 6                    | 10<br>10         | 0.1<br>0.1   | 1.1<br>1.1                            | 113.53<br>117.95 | 10.32<br>10.72     |
| 3                | 113689           | 234798           | 9.3          | 6                    | 10               | 0.1          | 1.1                                   | 37.79            | 3.44               |
| 4<br>5           | 113699<br>113726 | 234824<br>234812 | 11.3         | 6                    | 10               | 0.2          | 1.2 corded at location                | 20.90            | 2.73               |
| 6                | 113726           | 234812           |              |                      |                  |              | corded at location                    |                  |                    |
| 7<br>8           | 113684<br>113711 | 234816<br>234835 |              |                      |                  |              | corded at location corded at location |                  |                    |
| 9                | 113711           | 234835           | 10.5         | 6                    | 10               | 0.1          | 1.1                                   | 67.08            | 3.19               |
| 19               | 113765           | 234856           | 9.5          | 6                    | 10               | 0.1          | 1.1                                   | 33.57            | 3.33               |
| 20<br>21         | 113759<br>113766 | 234852<br>234839 | 9.7<br>9.5   | 6                    | 10<br>10         | 0.1          | 1.1<br>1.3                            | 32.83<br>14.77   | 3.25<br>2.95       |
| 22               | 113764           | 234832           | 0.6          | 6                    | 10               | 0.2          | 1.2                                   | 382.00           | 49.83              |
| 23<br>24         | 113763<br>113739 | 234816<br>234815 | 7.7<br>7.5   | 6                    | 10<br>10         | 0.2          | 1.2<br>1.2                            | 22.63<br>23.12   | 3.77<br>3.85       |
| 25               | 113821           | 234837           | 8.1          | 6                    | 10               | 0.3          | 1.3                                   | 17.13            | 3.43               |
| 26<br>27         | 113805<br>113799 | 234838<br>234824 | 7.7<br>8.6   | 6                    | 10<br>10         | 0.7          | 1.7<br>1.5                            | 6.42<br>8.13     | 2.64               |
| 28               | 113784           | 234815           | 8.2          | 6                    | 10               | 0.3          | 1.3                                   | 14.18            | 3.27               |
| 29<br>30         | 113734<br>113759 | 234795<br>234805 | 7.1          | 6                    | 10<br>10         | 0.9          | 1.9<br>1.2                            | 8.71<br>24.57    | 4.13<br>4.09       |
| 31               | 113803           | 234817           | 8.8          | 6                    | 10               | 0.3          | 1.3                                   | 13.21            | 3.05               |
| 7B<br>9B         | 114287<br>114288 | 235619<br>235764 | 9.3<br>4.1   | 6                    | 10<br>10         | 0.9          | 1.9<br>1.4                            | 4.20<br>20.94    | 1.99<br>5.98       |
| 10B              | 114278           | 235835           | 4.1          | 6                    | 10               | 1.2          | 2.2                                   | 6.98             | 3.81               |
| 11B<br>12B       | 114210<br>114183 | 235842<br>235776 | 0.2<br>11.3  | 6                    | 10<br>10         | 1.2<br>0.4   | 2.2<br>1.4                            | 125.00<br>7.84   | 68.18<br>2.24      |
| 13B              | 114119           | 235643           | 8.6          | 6                    | 10               | 0.1          | 1.1                                   | 40.39            | 3.67               |
| 14B<br>16B       | 114080<br>114032 | 235581<br>235523 | 9.8          | 6                    | 10<br>10         | 1.0<br>0.6   | 2.0<br>1.6                            | 4.20<br>5.99     | 2.10<br>2.24       |
| 24B              | 113951           | 235429           | 7.0          | 6                    | 10               | 0.3          | 1.3                                   | 16.64            | 3.84               |
| 26B<br>28B       | 113847<br>113736 | 235322<br>235225 | 11.2<br>13.7 | 6                    | 10<br>10         | 0.2<br>1.0   | 1.2<br>2.0                            | 15.75<br>2.61    | 2.62<br>1.30       |
| 30B              | 113588           | 235159           | 12.5         | 6                    | 10               | 1.0          | 2.0                                   | 2.84             | 1.42               |
| 47B<br>49B       | 113456<br>113309 | 235162<br>235189 | 12.0<br>9.3  | 6                    | 10<br>10         | 0.1          | 1.1<br>1.2                            | 29.45<br>18.78   | 2.68<br>3.13       |
| 50B              | 113235           | 235202           | 8.1          | 6                    | 10               | 1.7          | 2.7                                   | 2.54             | 1.60               |
| 52B<br>60B       | 113092<br>113761 | 235243<br>233512 | 8.1<br>2.9   | 6                    | 10<br>10         | 0.9          | 1.9<br>1.3                            | 4.76<br>40.10    | 2.25<br>9.25       |
| 61B              | 113786           | 233419           | 0.2          | 6                    | 10               | 2.5          | 3.5                                   | 60.00            | 42.86              |
| 62B<br>72B       | 113842<br>109911 | 233469<br>232506 | 3.0<br>2.3   | 6                    | 10               | 0.9<br>1.0   | 1.9<br>2.0                            | 12.86<br>15.02   | 6.09<br>7.51       |
| 72B<br>WP001B    | 109911<br>113524 | 232506<br>235182 | 2.3<br>12.5  | 6                    | 10<br>10         | 0.1          | 1.1                                   | 15.02<br>28.36   | 7.51<br>2.58       |
| WP006B<br>WP008B | 110978<br>109880 | 233591<br>232455 | 1.4<br>3.8   | 6                    | 10<br>10         | 3.8<br>1.5   | 4.8<br>2.5                            | 6.58<br>6.09     | 5.21<br>3.65       |
| WP001            | 113813           | 233127           | 3.3          | 6                    | 10               | 1.6          | 2.6                                   | 6.49             | 3.99               |
| WP002            | 113816           | 233222           | 4.3          | 6                    | 10               | 0.7          | 1.7                                   | 11.34<br>17.60   | 4.67<br>6.60       |
| WP003<br>WP004   | 113836<br>113771 | 233332<br>233321 | 3.3<br>2.8   | 6                    | 10<br>10         | 0.6<br>1.2   | 1.6<br>2.2                            | 17.60<br>10.23   | 5.58               |
| WP005            | 113752           | 233343           | 2.0          | 6                    | 10               | 2.8          | 3.8                                   | 6.13             | 4.52               |
| WP006<br>WP007   | 113702<br>113779 | 233446<br>233183 | 1.7<br>3.3   | 6                    | 10<br>10         | 1.4<br>0.9   | 2.4<br>1.9                            | 14.79<br>11.73   | 8.63<br>5.56       |
| B13              | 113886           | 233511           | 3.2          | 6                    | 10               | 1.6          | 2.6                                   | 6.72             | 4.13               |
| B14<br>B15       | 113914<br>113926 | 233441<br>233370 | 1.4          | 6                    | 10<br>10         | 2.5          | 3.5<br>3.3                            | 6.32<br>10.44    | 4.52<br>7.28       |
| B18              | 113741           | 233421           | 1.7          | 6                    | 10               | 2.4          | 3.4                                   | 8.63             | 6.09               |
| B21<br>B22       | 113765<br>113810 | 233303<br>233315 | 3.3          | 6                    | 10<br>10         | 0.8          | 1.8<br>1.7                            | 13.20<br>15.35   | 5.87<br>6.32       |
| B23              | 113854           | 233327           | 1.8          | 6                    | 10               | 0.7          | 1.7                                   | 27.68            | 11.40              |
| B28<br>B29       | 113806<br>113786 | 233113<br>233208 | 2.9<br>3.3   | 6                    | 10<br>10         | 2.3<br>0.8   | 3.3<br>1.8                            | 5.13<br>12.97    | 3.57<br>5.77       |
| R1               | 111918           | 233085           | 0.2          | 6                    | 10               | 2.6          | 3.6                                   | 57.69            | 41.67              |
| R10<br>R2        | 112374<br>111968 | 233130<br>233090 | 2.6<br>0.6   | 6                    | 10<br>10         | 1.4<br>3.1   | 2.4<br>4.1                            | 9.54<br>18.48    | 5.57<br>13.98      |
| R3               | 112017           | 233095           | 1.1          | 6                    | 10               | 2.6          | 3.6                                   | 11.54            | 8.34               |
| R7               | 112216           | 233114           | 2.5          | 6                    | 10               | 3.8          | 4.8                                   | 3.68             | 2.91               |

| C                    | alculat          | ed FoS o         | f Natur      | al Peat Slo          | es for Ard       | derroo \     | Wind Farm (U          | ndrained Ana    | llysis)            |
|----------------------|------------------|------------------|--------------|----------------------|------------------|--------------|-----------------------|-----------------|--------------------|
| Turbine              | Easting          | Northing         | Slope        | Undrained shear      | Bulk unit weight | Depth of In- | Surcharge Equivalent  |                 | for Load Condition |
| No./Waypoint         |                  |                  |              | strength             | of Peat          | situ Peat    | Placed Fill Depth (m) |                 |                    |
|                      |                  |                  | β (deg)      | c <sub>u</sub> (kPa) | γ (kN/m³)        | (m)          | Condition (2)         | Condition (1)   | Condition (2)      |
| R8                   | 112266           | 233119           | 2.6          | 6                    | 10               | 0.9          | 1.9                   | 14.52           | 6.88               |
| R9<br>SUB5           | 112316<br>113896 | 233124<br>234936 | 0.1<br>7.6   | 6                    | 10<br>10         | 0.6<br>0.5   | 1.6<br>1.5            | 1000.00<br>9.12 | 375.00<br>3.04     |
| MKOSA-1              | 113760           | 233350           | 2.0          | 6                    | 10               | 2.1          | 3.1                   | 8.17            | 5.54               |
| MKOSA-2<br>MKOSA-3   | 113769<br>113778 | 233360<br>233370 | 2.0<br>1.8   | 6                    | 10<br>10         | 2.2          | 3.2<br>3.0            | 7.80<br>9.69    | 5.36<br>6.46       |
| MKOSA-4              | 113778           | 233386           | 2.5          | 6                    | 10               | 1.0          | 2.0                   | 13.66           | 6.83               |
| MKOSA-5              | 113811           | 233403           | 2.2          | 6                    | 10               | 1.0          | 2.0                   | 15.81           | 7.91               |
| MKOSA-6<br>MKOSA-7   | 113832<br>113842 | 233415<br>233441 | 2.6          | 6                    | 10<br>10         | 1.1          | 2.1<br>2.0            | 12.15<br>12.03  | 6.36<br>6.02       |
| MKOSA-8              | 113849           | 233463           | 3.0          | 6                    | 10               | 0.8          | 1.8                   | 14.46           | 6.43               |
| MKOSA-9<br>MKOSA-10  | 113844<br>113841 | 233487<br>233510 | 3.8          | 6                    | 10<br>10         | 1.2<br>0.4   | 2.2<br>1.4            | 7.50<br>22.83   | 4.09<br>6.52       |
| MKOSA-11             | 113730           | 233485           | 0.6          | 6                    | 10               | 1.2          | 2.2                   | 47.75           | 26.05              |
| MKOSA-12<br>MKOSA-13 | 113747<br>113777 | 233472<br>233443 | 2.2<br>0.1   | 6                    | 10<br>10         | 0.4<br>3.6   | 1.4<br>4.6            | 38.52<br>83.33  | 11.01<br>65.22     |
| MKOSA-14             | 113784           | 233442           | 0.2          | 6                    | 10               | 4.0          | 5.0                   | 50.00           | 40.00              |
| MKOSA-15<br>MKOSA-16 | 113799<br>113809 | 233431<br>233413 | 2.2          | 6                    | 10<br>10         | 2.4<br>0.5   | 3.4<br>1.5            | 6.42<br>31.62   | 4.53<br>10.54      |
| MKOSA-17             | 113826           | 233402           | 2.5          | 6                    | 10               | 0.5          | 1.5                   | 27.33           | 9.11               |
| MKOSA-18<br>MKOSA-19 | 113838<br>113862 | 233385<br>233368 | 2.5<br>0.6   | 6                    | 10<br>10         | 1.2          | 2.2<br>2.0            | 11.65<br>57.30  | 6.35<br>28.65      |
| MKOSA-20             | 113887           | 233353           | 1.3          | 6                    | 10               | 1.0          | 2.0                   | 27.29           | 13.64              |
| MKOSA-30<br>MKOSA-31 | 113819<br>113805 | 233261<br>233255 | 3.7<br>3.2   | 6                    | 10<br>10         | 1.0<br>1.0   | 2.0                   | 9.27<br>10.75   | 4.63<br>5.37       |
| MKOSA-32             | 113794           | 233232           | 3.4          | 6                    | 10               | 1.0          | 2.0                   | 10.20           | 5.10               |
| MKOSA-33<br>MKOSA-34 | 112361           | 233119           | 2.9          | 6                    | 10               | 0.2          | 1.2                   | 60.15           | 10.03              |
| MKOSA-34<br>MKOSA-35 | 112369<br>112370 | 233095<br>233072 | 2.5<br>2.7   | 6                    | 10<br>10         | 0.1<br>1.9   | 1.1<br>2.9            | 136.63<br>6.59  | 12.42<br>4.32      |
| MKOSA-36             | 112375           | 233052           | 2.2          | 6                    | 10               | 3.4          | 4.4                   | 4.53            | 3.50               |
| MKOSA-39<br>MKOSA-40 | 112319<br>111921 | 233202<br>233082 | 1.9<br>0.9   | 6                    | 10<br>10         | 2.0<br>4.0   | 3.0<br>5.0            | 9.10<br>9.38    | 6.07<br>7.50       |
| MKOSA-41             | 111926           | 233081           | 0.7          | 6                    | 10               | 3.5          | 4.5                   | 14.29           | 11.11              |
| MKOSA-42<br>MKOSA-43 | 111937<br>111948 | 233068<br>233060 | 1.7          | 6                    | 10<br>10         | 3.2<br>3.5   | 4.2<br>4.5            | 6.26<br>5.54    | 4.77<br>4.31       |
| MKOSA-44             | 111960           | 233053           | 1.9          | 6                    | 10               | 3.5          | 4.5                   | 5.05            | 3.93               |
| MKOSA-45<br>MKOSA-46 | 111975<br>111994 | 233045<br>233041 | 1.9<br>2.2   | 6                    | 10<br>10         | 2.5<br>2.6   | 3.5<br>3.6            | 7.28<br>5.93    | 5.20<br>4.28       |
| MKOSA-47             | 112005           | 233041           | 2.3          | 6                    | 10               | 3.2          | 4.2                   | 4.58            | 3.49               |
| MKOSA-48<br>MKOSA-49 | 112021<br>112030 | 233037<br>233034 | 2.3          | 6                    | 10<br>10         | 1.7<br>1.0   | 2.7<br>2.0            | 8.84<br>13.36   | 5.56<br>6.68       |
| MKOSA-50             | 112041           | 233036           | 2.6          | 6                    | 10               | 1.7          | 2.7                   | 7.86            | 4.95               |
| MKOSA-51<br>MKOSA-52 | 112060           | 233034<br>233026 | 2.3<br>1.8   | 6                    | 10<br>10         | 1.3<br>1.7   | 2.3<br>2.7            | 11.28<br>11.04  | 6.37<br>6.95       |
| MKOSA-52             | 112076<br>112092 | 233026           | 1.4          | 6                    | 10               | 0.5          | 1.5                   | 48.03           | 16.01              |
| MKOSA-54             | 112107           | 233021           | 1.3          | 6                    | 10               | 0.9          | 1.9                   | 29.00           | 13.74              |
| MKOSA-55<br>MKOSA-56 | 112121<br>112135 | 233020<br>233015 | 1.1<br>0.1   | 6                    | 10<br>10         | 1.1          | 2.1<br>2.8            | 27.28<br>333.33 | 14.29<br>214.29    |
| MKOSA-57             | 112150           | 233009           | 0.1          | 6                    | 10               | 1.8          | 2.8                   | 166.67          | 107.14             |
| MKOSA-58<br>MKOSA-85 | 112165<br>111193 | 233001<br>232259 | 0.1<br>7.1   | 6                    | 10<br>10         | 1.8<br>2.0   | 2.8<br>3.0            | 166.67<br>2.46  | 107.14<br>1.64     |
| MKOSA-86             | 112641           | 232746           | 2.6          | 6                    | 10               | 2.4          | 3.4                   | 5.57            | 3.93               |
| MKOSA-88<br>MKOSA-89 | 112649<br>112636 | 232780<br>232785 | 2.3          | 6                    | 10<br>10         | 2.8<br>1.8   | 3.8<br>2.8            | 5.37<br>9.54    | 3.95<br>6.13       |
| MKOSA-91             | 112610           | 232783           | 2.3          | 6                    | 10               | 1.0          | 2.0                   | 15.02           | 7.51               |
| MKOSA-92<br>MKOSA-93 | 111845<br>111831 | 233804<br>233824 | 0.8          | 6                    | 10<br>10         | 3.5<br>3.8   | 4.5<br>4.8            | 12.25<br>11.28  | 9.53<br>8.93       |
| MKOSA-99             | 111159           | 232305           |              |                      |                  | No peat re   | corded at location    |                 |                    |
| 2                    | 114278<br>114181 | 235873<br>235913 | 3.5<br>2.7   | 6                    | 10<br>10         | 0.8<br>1.0   | 1.8<br>2.0            | 12.14<br>12.53  | 5.40<br>6.26       |
| 3                    | 114152           | 235728           | 8.3          | 6                    | 10               | 0.7          | 1.7                   | 6.04            | 2.49               |
| 4                    | 114081<br>113849 | 235568           | 8.6<br>12.0  | 6                    | 10<br>10         | 2.0          | 3.0<br>1.2            | 2.03<br>14.72   | 1.35<br>2.45       |
| 5<br>6               | 113849           | 235306<br>235226 | 12.0<br>13.7 | 6                    | 10<br>10         | 0.2          | 1.2                   | 6.51            | 1.86               |
| 7                    | 113595           | 235165           | 12.5         | 6                    | 10               | 0.3<br>0.9   | 1.3                   | 9.45<br>3.39    | 2.18<br>1.61       |
| 9                    | 113536<br>113146 | 235192<br>235208 | 11.6<br>11.0 | 6                    | 10<br>10         | 1.0          | 1.9<br>2.0            | 3.39            | 1.60               |
| 10                   | 112858           | 235336           | 3.5          | 6                    | 10               | 0.1          | 1.1                   | 98.73           | 8.98               |
| 11<br>12             | 112941<br>113057 | 235494<br>235550 | 6.0<br>7.0   | 6                    | 10<br>10         | 3.5<br>2.1   | 4.5<br>3.1            | 1.65<br>2.38    | 1.28<br>1.61       |
| 13                   | 113246           | 235580           | 4.5          | 6                    | 10               | 0.6          | 1.6                   | 12.90           | 4.84               |
| 14<br>15             | 113371<br>112789 | 235650<br>235367 | 4.7<br>11.7  | 6                    | 10<br>10         | 2.1<br>0.7   | 3.1<br>1.7            | 3.51<br>4.32    | 2.38<br>1.78       |
| 16                   | 112648           | 235577           | 6.4          | 6                    | 10               | 0.4          | 1.4                   | 13.56           | 3.87               |
| 17<br>18             | 112649<br>112685 | 235703<br>235789 | 7.0<br>3.6   | 6                    | 10<br>10         | 0.4          | 1.4<br>1.3            | 12.38<br>31.87  | 3.54<br>7.36       |
| 21                   | 114371           | 234777           | 3.7          | 6                    | 10               | 1.2          | 2.2                   | 7.72            | 4.21               |
| 22<br>27             | 114333<br>113424 | 234716<br>234533 | 3.2<br>1.8   | 6                    | 10<br>10         | 1.1<br>2.4   | 2.1<br>3.4            | 9.77<br>7.82    | 5.12<br>5.52       |
| 28                   | 113488           | 234518           | 1.2          | 6                    | 10               | 2.6          | 3.6                   | 10.99           | 7.94               |
| 68<br>69             | 113380<br>113745 | 233936<br>233307 | 2.2<br>3.8   | 6                    | 10<br>10         | 4.0<br>0.7   | 5.0<br>1.7            | 3.85<br>13.04   | 3.08<br>5.37       |
| 70                   | 113745           | 233307           | 3.8<br>5.9   | 6                    | 10               | 0.7          | 1.7                   | 8.41            | 3.46               |
| 71                   | 113537           | 233246           | 7.1          | 6                    | 10               | 0.4          | 1.4                   | 12.28           | 3.51               |
| 72<br>74             | 113480<br>113397 | 233280<br>232635 | 5.7<br>6.6   | 6                    | 10<br>10         | 0.6          | 1.6<br>1.7            | 10.10<br>7.55   | 3.79<br>3.11       |
| 77                   | 112521           | 232712           | 0.4          | 6                    | 10               | 0.3          | 1.3                   | 285.73          | 65.94              |
| 78<br>79             | 112434<br>112286 | 232818<br>233234 | 0.2<br>2.2   | 6                    | 10<br>10         | 0.3<br>1.7   | 1.3<br>2.7            | 666.67<br>9.30  | 153.85<br>5.86     |
| 80                   | 112288           | 233333           | 1.3          | 6                    | 10               | 3.0          | 4.0                   | 8.70            | 6.53               |
| 81<br>82             | 112290<br>112530 | 233432<br>233806 | 0.7<br>1.8   | 6                    | 10<br>10         | 3.4<br>4.7   | 4.4<br>5.7            | 13.58<br>3.99   | 10.49<br>3.29      |
| 84                   | 112593           | 233955           | 1.6          | 6                    | 10               | 2.5          | 3.5                   | 8.58            | 6.13               |
| 85<br>86             | 112934<br>112826 | 234318<br>234267 | 1.6<br>3.5   | 6                    | 10<br>10         | 0.9<br>0.7   | 1.9<br>1.7            | 23.83<br>13.88  | 11.29<br>5.71      |
| 86<br>87             | 112826           | 234267           | 3.6          | 6                    | 10               | 1.0          | 2.0                   | 9.56            | 4.78               |
| 87                   |                  |                  |              |                      |                  | 1.1          | 2.1                   | 11.88           | 6.22               |

| C                        | alculat          | ed FoS o         | f Natur     | al Peat Slor         | es for Ard       | derroo \     | Wind Farm (Ur         | ndrained Ana    | lvsis)             |
|--------------------------|------------------|------------------|-------------|----------------------|------------------|--------------|-----------------------|-----------------|--------------------|
| Turbine                  | Easting          | Northing         | Slope       | Undrained shear      | Bulk unit weight | Depth of In- | Surcharge Equivalent  |                 | for Load Condition |
| No./Waypoint             |                  |                  |             | strength             | of Peat          | situ Peat    | Placed Fill Depth (m) |                 |                    |
|                          |                  |                  | β (deg)     | c <sub>u</sub> (kPa) | γ (kN/m³)        | (m)          | Condition (2)         | Condition (1)   | Condition (2)      |
| 89                       | 112625           | 234385           | 0.6         | 6                    | 10               | 1.9          | 2.9                   | 28.71           | 18.81              |
| 90<br>91                 | 112235<br>112209 | 234630<br>234559 | 1.1<br>3.0  | 6                    | 10<br>10         | 2.7          | 3.7<br>3.6            | 11.70<br>4.45   | 8.54<br>3.21       |
| 92                       | 112177           | 234464           | 3.7         | 6                    | 10               | 0.7          | 1.7                   | 13.45           | 5.54               |
| 93<br>94                 | 112245<br>111976 | 234342<br>234600 | 0.1<br>2.1  | 6                    | 10<br>10         | 2.7          | 1.7<br>3.7            | 428.57<br>6.01  | 176.47<br>4.39     |
| 95                       | 111953           | 234799           | 2.2         | 6                    | 10               | 2.0          | 3.0                   | 7.91            | 5.27               |
| 96<br>97                 | 111968<br>112044 | 234884<br>234955 | 5.4<br>4.8  | 6                    | 10<br>10         | 0.8          | 1.8<br>1.3            | 8.05<br>23.98   | 3.58<br>5.53       |
| 98<br>99                 | 112106<br>111740 | 234983<br>234571 | 4.2<br>2.9  | 6                    | 10<br>10         | 0.2<br>1.5   | 1.2<br>2.5            | 41.31<br>7.86   | 6.89<br>4.72       |
| 100                      | 111691           | 234448           | 2.8         | 6                    | 10               | 0.6          | 1.6                   | 20.46           | 7.67               |
| 101<br>102               | 111642<br>111829 | 234325<br>233785 | 3.9<br>0.8  | 6                    | 10<br>10         | 2.0<br>3.7   | 3.0<br>4.7            | 4.37<br>11.59   | 2.91<br>9.12       |
| 102                      | 111945           | 233923           | 2.2         | 6                    | 10               | 5.4          | 6.4                   | 2.85            | 2.41               |
| 104<br>105               | 112013<br>112102 | 233969<br>233995 | 0.6<br>1.6  | 6                    | 10<br>10         | 0.4<br>2.5   | 1.4<br>3.5            | 150.02<br>8.58  | 42.86<br>6.13      |
| 106                      | 111090           | 233697           | 4.1         | 6                    | 10               | 1.2          | 2.2                   | 7.08            | 3.86               |
| 107<br>108               | 111161<br>111230 | 233652<br>233603 | 3.0<br>0.8  | 6                    | 10<br>10         | 1.6          | 2.6<br>2.7            | 7.23<br>25.22   | 4.45<br>15.88      |
| 109                      | 111427           | 233524           | 1.0         | 6                    | 10               | 0.5          | 1.5                   | 66.69           | 22.23              |
| 110<br>111               | 111296<br>111165 | 233349<br>233174 | 0.9         | 6                    | 10<br>10         | 3.5<br>1.6   | 4.5<br>2.6            | 10.72<br>34.10  | 8.34<br>20.98      |
| 125                      | 111039           | 232193           | 0.6         | 6                    | 10               | 0.9          | 1.9                   | 63.67           | 30.16              |
| 126<br>127               | 110932<br>110877 | 232069<br>231982 | 2.7<br>0.6  | 6                    | 10<br>10         | 2.1<br>1.7   | 3.1<br>2.7            | 5.97<br>33.71   | 4.04<br>21.22      |
| wp005                    | 111204           | 233261           | 1.1         | 6                    | 10               | 1.8          | 2.8                   | 17.55           | 11.28              |
| wp006<br>wp007           | 111932<br>113986 | 234707<br>235417 | 0.2<br>13.5 | 6                    | 10<br>10         | 3.5<br>0.8   | 4.5<br>1.8            | 42.86<br>3.29   | 33.33<br>1.46      |
| wp010                    | 112922           | 235339           | 4.0         | 6                    | 10               | 0.1          | 1.1                   | 86.13           | 7.83               |
| DB3                      | 117295<br>117169 | 236738<br>236733 | 1.8         | 6                    | 10               | 1.6          | 2.6                   | 12.23<br>8.99   | 7.52<br>4.00       |
| DB5<br>DB6               | 117181           | 236715           | 4.8<br>0.6  | 6                    | 10<br>10         | 0.8<br>0.7   | 1.8<br>1.7            | 81.86           | 33.71              |
| DB7<br>DB10              | 117214<br>117093 | 236680<br>236667 | 3.6<br>7.7  | 6                    | 10<br>10         | 0.7<br>0.3   | 1.7<br>1.3            | 13.66<br>15.08  | 5.62<br>3.48       |
| DB10<br>DB11             | 117111           | 236641           | 10.3        | 6                    | 10               | 0.2          | 1.2                   | 17.03           | 2.84               |
| DB14<br>DB15             | 116990<br>117005 | 236645<br>236620 | 8.6<br>7.0  | 6                    | 10<br>10         | 0.6          | 1.6<br>1.4            | 6.73<br>12.48   | 2.52<br>3.57       |
| DB13                     | 116917           | 236573           | 4.3         | 6                    | 10               | 0.4          | 1.8                   | 9.93            | 4.41               |
| DB21<br>DB24             | 116931<br>116810 | 236532<br>236559 | 8.1<br>6.1  | 6                    | 10<br>10         | 0.2          | 1.2<br>1.6            | 21.55<br>9.54   | 3.59<br>3.58       |
| DB25                     | 116828           | 236527           | 5.3         | 6                    | 10               | 1.3          | 2.3                   | 5.01            | 2.83               |
| DB30<br>DB32             | 116779<br>116728 | 236489<br>236530 | 2.3<br>5.0  | 6                    | 10<br>10         | 1.9<br>0.8   | 2.9<br>1.8            | 7.91<br>8.69    | 5.18<br>3.86       |
| DB32                     | 116712           | 236578           | 9.7         | 6                    | 10               | 0.5          | 1.5                   | 7.22            | 2.41               |
| DB34<br>DB35             | 116625<br>116645 | 236563<br>236585 | 2.9<br>4.8  | 6                    | 10<br>10         | 1.0<br>0.6   | 2.0<br>1.6            | 12.03<br>11.99  | 6.02<br>4.50       |
| DB35<br>DB37             | 116536           | 236608           | 5.3         | 6                    | 10               | 0.6          | 1.4                   | 16.27           | 4.65               |
| wp001                    | 116704           | 236530<br>236494 | 0.6<br>2.1  | 6                    | 10<br>10         | 0.9<br>1.8   | 1.9<br>2.8            | 63.67<br>9.02   | 30.16<br>5.80      |
| wp002<br>wp003           | 116828<br>117254 | 236761           | 2.5         | 6                    | 10               | 1.8          | 2.8                   | 7.77            | 4.99               |
| T14<br>T14-1             | 112557<br>112537 | 233817           | 0.7<br>0.9  | 6                    | 10<br>10         | 3.0<br>1.9   | 4.0<br>2.9            | 16.67<br>21.06  | 12.50<br>13.80     |
| T14-1                    | 112521           | 233828<br>233830 | 2.1         | 6                    | 10               | 3.2          | 4.2                   | 5.07            | 3.87               |
| T14-3                    | 112506           | 233837           | 1.3         | 6                    | 10               | 3.5          | 4.5                   | 7.80<br>8.25    | 6.06<br>6.84       |
| T14-4<br>T14-5           | 112579<br>112597 | 233828<br>233818 | 0.9         | 6                    | 10<br>10         | 4.9<br>5.0   | 5.9<br>6.0            | 8.00            | 6.67               |
| T14-7<br>T14-8           | 112546<br>112549 | 233805<br>233777 | 0.8<br>1.4  | 6                    | 10<br>10         | 4.0<br>5.0   | 5.0<br>6.0            | 10.72<br>5.00   | 8.57<br>4.17       |
| T14-9                    | 112549           | 233771           | 1.4         | 6                    | 10               | 4.0          | 5.0                   | 6.25            | 5.00               |
| T14-10<br>T14-11         | 112556<br>112557 | 233832<br>233858 | 0.9<br>2.3  | 6                    | 10<br>10         | 1.0          | 2.0                   | 40.01<br>14.66  | 20.00<br>7.33      |
| T14-11                   | 112557           | 233872           | 2.3         | 6                    | 10               | 1.5          | 2.5                   | 10.02           | 6.01               |
| T15-1<br>T15-2           | 113360<br>113360 | 233936<br>233940 | 2.3         | 6                    | 10<br>10         | 2.0          | 3.0<br>3.6            | 7.51<br>5.64    | 5.01<br>4.07       |
| T15-3                    | 113362           | 233960           | 2.2         | 6                    | 10               | 1.2          | 2.2                   | 12.84           | 7.00               |
| T15-11<br>T15-12         | 113392<br>113414 | 233919<br>233919 | 1.8<br>1.7  | 6                    | 10<br>10         | 3.0<br>0.6   | 4.0<br>1.6            | 6.26<br>34.51   | 4.69<br>12.94      |
| T21                      | 111986           | 232610           | 0.6         | 6                    | 10               | 1.7          | 2.7                   | 35.30           | 22.22              |
| T21-1<br>T21-4           | 111961<br>111996 | 232614<br>232611 | 0.6<br>0.6  | 6                    | 10<br>10         | 5.0<br>0.5   | 6.0<br>1.5            | 12.00<br>120.01 | 10.00<br>40.00     |
| T21-5                    | 112022           | 232610           | 0.6         | 6                    | 10               | 1.8          | 2.8                   | 33.34           | 21.43              |
| T21-6<br>T21-7           | 112032<br>111977 | 232610<br>232602 | 1.8<br>0.6  | 6                    | 10<br>10         | 2.8<br>1.5   | 3.8<br>2.5            | 6.92<br>40.00   | 5.10<br>24.00      |
| T21-8                    | 111974           | 232586           | 0.6         | 6                    | 10               | 1.1          | 2.1                   | 54.55           | 28.57              |
| T21-9<br>T21-10          | 111964<br>111987 | 232567<br>232628 | 0.6         | 6                    | 10<br>10         | 1.7<br>2.0   | 2.7<br>3.0            | 35.30<br>30.00  | 22.22              |
| T21-11                   | 111992           | 232648           | 0.6         | 6                    | 10               | 2.4          | 3.4                   | 25.00           | 17.65              |
| T21-12<br>T10 route      | 112001<br>113599 | 232668<br>234505 | 0.6<br>4.0  | 6                    | 10<br>10         | 2.0<br>1.0   | 3.0<br>2.0            | 30.00<br>8.61   | 20.00<br>4.31      |
| T101                     | 113638           | 234492           | 0.1         | 6                    | 10               | 1.3          | 2.3                   | 230.77          | 130.44             |
| T102<br>T103             | 113628<br>113616 | 234496<br>234472 | 0.3<br>1.2  | 6                    | 10<br>10         | 1.5<br>3.0   | 2.5<br>4.0            | 80.00<br>9.53   | 48.00<br>7.15      |
| T104                     | 113632           | 234747           | 2.9         | 6                    | 10               | 2.2          | 3.2                   | 5.47            | 3.76               |
| T15<br>T151              | 113400<br>113421 | 233922<br>233905 | 1.8         | 6                    | 10<br>10         | 1.7<br>4.2   | 2.7<br>5.2            | 11.04<br>5.72   | 6.95<br>4.62       |
| T1510                    | 113389           | 233740           | 2.9         | 6                    | 10               | 0.8          | 1.8                   | 15.04           | 6.68               |
| T152<br>T156             | 113414<br>113428 | 233895<br>233782 | 1.4<br>2.1  | 6                    | 10<br>10         | 4.5<br>0.9   | 5.5<br>1.9            | 5.34<br>18.54   | 4.37<br>8.78       |
| T157                     | 113427           | 233755           | 3.7         | 6                    | 10               | 1.2          | 2.2                   | 7.72            | 4.21               |
| T159<br>MCKOS 1.1        | 113461<br>113519 | 233729<br>233243 | 1.7<br>6.8  | 6                    | 10<br>10         | 2.5<br>1.0   | 3.5<br>2.0            | 8.28<br>5.11    | 5.92<br>2.56       |
| MCKOS 1.2                | 112665           | 234497           | 4.6         | 6                    | 10               | 1.1          | 2.1                   | 6.86            | 3.59               |
| MCKOS 1.3<br>MCKOS 1.4   | 112708<br>112698 | 234483<br>234413 | 5.7<br>5.8  | 6                    | 10<br>10         | 0.4          | 1.4<br>1.2            | 15.15<br>29.72  | 4.33<br>4.95       |
| MCKOS 1.5                | 112677           | 234460           | 4.1         | 6                    | 10               | 0.9          | 1.9                   | 9.31            | 4.41               |
| MCKOS 1.6<br>MCKOS 1.7   | 112645<br>114481 | 234437<br>235273 | 1.1<br>1.6  | 6                    | 10<br>10         | 4.7<br>1.5   | 5.7<br>2.5            | 6.39<br>14.30   | 5.27<br>8.58       |
| MCKOS 1.7<br>MCKOS 1.8   | 114481<br>114437 | 2352/3 235315    | 1.6<br>4.9  | 6                    | 10               | 0.8          | 1.8                   | 14.30<br>8.89   | 8.58<br>3.95       |
| MCKOS 1.9                | 114437           | 235237           | 2.2         | 6                    | 10               | 2.4          | 3.4                   | 6.42            | 4.53               |
| MCKOS 1.10<br>MCKOS 1.11 | 114440<br>114390 | 235263<br>235292 | 3.4<br>3.4  | 6                    | 10<br>10         | 2.1<br>1.5   | 3.1<br>2.5            | 4.78<br>6.69    | 3.24<br>4.01       |
| MCKOS 1.12               | 113700           | 233265           | 3.1         | 6                    | 10               | 1.0          | 2.0                   | 10.94           | 5.47               |
| MCKOS 1.12<br>MCKOS 1.13 | 113636           | 233246           | 5.7         | 6                    | 10               | 0.5          | 1.5                   | 12.24           | 4.08               |

| Turbine<br>No./Waypoint  | Easting          | Northing         | Slope      | Undrained shear strength | Bulk unit weight of Peat | Depth of In-<br>situ Peat | Surcharge Equivalent<br>Placed Fill Depth (m) | Factor of Safety | for Load Condition |
|--------------------------|------------------|------------------|------------|--------------------------|--------------------------|---------------------------|-----------------------------------------------|------------------|--------------------|
|                          |                  |                  | β (deg)    | c <sub>u</sub> (kPa)     | γ (kN/m³)                | (m)                       | Condition (2)                                 | Condition (1)    | Condition (2)      |
| MCKOS 1.15               | 113396           | 233244           | 4.0        |                          | 10                       | 0.5                       | 1.5                                           | 14.39            | 4.80               |
|                          |                  |                  | 4.8        | 6                        | 10                       | 0.5                       | 1.5                                           |                  |                    |
| MCKOS 1.16<br>MCKOS 1.17 | 113378<br>113368 | 233216<br>233272 | 1.4<br>5.6 | 6                        | 10<br>10                 | 3.5<br>1.6                | 4.5<br>2.6                                    | 6.86<br>3.86     | 5.34<br>2.38       |
|                          |                  |                  |            |                          |                          |                           |                                               |                  |                    |
| MCKOS 1.18<br>MCKOS 1.19 | 113431<br>113437 | 233279           | 6.1<br>5.8 | 6                        | 10<br>10                 | 0.2                       | 1.2                                           | 28.62            | 4.77               |
|                          |                  | 233240           |            |                          |                          |                           |                                               | 8.49             | 3.50               |
| MCKOS 1.20               | 112195           | 234502           | 4.7        | 6                        | 10                       | 1.3                       | 2.3                                           | 5.60             | 3.16               |
| MCKOS 1.21               | 112176           | 234425           | 3.4        | 6                        | 10                       | 1.8                       | 2.8                                           | 5.58             | 3.58               |
| MCKOS 1.22               | 112270           | 234374           | 1.3        | 6                        | 10                       | 1.4                       | 2.4                                           | 19.49            | 11.37              |
| MCKOS 1.23               | 112298           | 234370           | 1.5        | 6                        | 10                       | 1.5                       | 2.5                                           | 14.83            | 8.90               |
| MCKOS 1.24               | 112292           | 234427           | 2.0        | 6                        | 10                       | 1.8                       | 2.8                                           | 9.54             | 6.13               |
| MCKOS 1.25               | 112324           | 234366           | 1.9        | 6                        | 10                       | 0.9                       | 1.9                                           | 20.22            | 9.58               |
| MCKOS 1.26               | 112283           | 234342           | 1.2        | 6                        | 10                       | 1.6                       | 2.6                                           | 17.87            | 10.99              |
| MCKOS 1.27               | 112703           | 234305           | 3.7        | 6                        | 10                       | 0.9                       | 1.9                                           | 10.46            | 4.95               |
| MCKOS 1.28               | 112798           | 234259           | 4.4        | 6                        | 10                       | 0.2                       | 1.2                                           | 39.19            | 6.53               |
| MCKOS 1.29               | 112915           | 234326           | 1.8        | 6                        | 10                       | 0.9                       | 1.9                                           | 20.85            | 9.88               |
| MCKOS 1.30               | 112935           | 234328           | 1.5        | 6                        | 10                       | 0.9                       | 1.9                                           | 24.71            | 11.70              |
| MCKOS 1.31               | 112939           | 234361           | 1.8        | 6                        | 10                       | 1.1                       | 2.1                                           | 17.61            | 9.23               |
| MCKOS 1.32               | 112961           | 234331           | 2.1        | 6                        | 10                       | 0.9                       | 1.9                                           | 18.54            | 8.78               |
| MCKOS 1.33               | 112940           | 234305           | 1.6        | 6                        | 10                       | 0.9                       | 1.9                                           | 23.83            | 11.29              |

1.57 3000.01 27.55 1.26 375.00 11.10 Minimum = Maximum = Average =

### Notes:

- Notes:

  (1) Assuming a bulk unit weight for peat of 10kN/m³
  (2) Assuming a surcharge equivalent to fill depth of 1m of peat.
  (3) Slope inclination (β) based on site readings and site contour plans.
  (4) A lower bound undrained shear strength, cu for the peat of 6kPa was selected for the analysis based on the cu values recorded at the site. It should be noted that a cu of 6kPa for the peat is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality the peat generally has a higher undrained strength.
  (5) Peat depths based on peat depth probes.
  (6) For load conditions see Report text.

|                         |            |           |                                |                         |                                    |                           |                   |                                          | ained Analy      |                    |
|-------------------------|------------|-----------|--------------------------------|-------------------------|------------------------------------|---------------------------|-------------------|------------------------------------------|------------------|--------------------|
| Turbine<br>No./Waypoint | Slope      | Design c' | Bulk unit<br>weight of<br>Peat | Unit weight<br>of Water | 100% Water<br>to height of<br>Peat | Depth of In-<br>situ Peat | Friction<br>Angle | Equivalent Total<br>Depth of Peat<br>(m) | Factor of Safety | for Load Condition |
|                         | α (deg)    | c' (kPa)  | γ (kN/m³)                      | γ <sub>w</sub> (kN/m3)  | (m)                                | (m)                       | ø' (deg)          | Condition (2)                            | Condition (1)    | Condition (2)      |
|                         |            |           |                                |                         |                                    |                           |                   | J                                        | 100% Water       | 100% Water         |
| T1                      | 3          | 4         | 10.0                           | 10.0                    | 0.9                                | 0.9                       | 25                | 1.90                                     | 8.50             | 8.71               |
| T2                      | 3          | 4         | 10.0                           | 10.0                    | 1.3                                | 1.3                       | 25                | 2.30                                     | 5.89             | 7.20               |
| T3<br>T4                | 10<br>6    | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 0.9<br>1.5                         | 0.9<br>1.5                | 25<br>25          | 1.90<br>2.50                             | 2.60<br>2.57     | 2.62<br>3.31       |
| T5                      | 4          | 4         | 10.0                           | 10.0                    | 0.7                                | 0.7                       | 25                | 1.70                                     | 8.21             | 7.30               |
| T6                      | 2          | 4         | 10.0                           | 10.0                    | 0.9                                | 0.9                       | 26                | 1.90                                     | 12.74            | 13.39              |
| T7<br>T8                | 2          | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 2.0<br>0.7                         | 2.0<br>0.7                | 25<br>25          | 3.00<br>1.70                             | 5.73<br>8.21     | 7.30               |
| T9                      | 2          | 4         | 10.0                           | 10.0                    | 0.7                                | 0.7                       | 25                | 1.90                                     | 12.74            | 13.06              |
| T10                     | 2          | 4         | 10.0                           | 10.0                    | 1.5                                | 1.5                       | 27                | 2.50                                     | 7.65             | 10.42              |
| T11<br>T12              | 4          | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.1<br>1.2                         | 1.1                       | 28<br>25          | 2.10<br>2.20                             | 10.43<br>4.79    | 12.71<br>5.64      |
| T13                     | 2          | 4         | 10.0                           | 10.0                    | 3.7                                | 3.7                       | 25                | 4.70                                     | 3.10             | 5.28               |
| T14                     | 2          | 4         | 10.0                           | 10.0                    | 3.5                                | 3.5                       | 25                | 4.50                                     | 3.28             | 5.52               |
| T15                     | 2          | 4         | 10.0                           | 10.0                    | 1.2                                | 1.2                       | 25                | 2.20                                     | 9.56             | 11.28              |
| T16<br>T17              | 2          | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.6<br>1.7                         | 1.6<br>1.7                | 25<br>25          | 2.60<br>2.70                             | 14.33<br>6.75    | 19.09<br>9.19      |
| T18                     | 7          | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 2.07             | 2.73               |
| T19                     | 5          | 4         | 10.0                           | 10.0                    | 0.8                                | 0.8                       | 25                | 1.80                                     | 5.76             | 5.52               |
| T20<br>T21              | 2          | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.4<br>1.7                         | 3.4<br>1.7                | 25<br>25          | 4.40<br>2.70                             | 3.37<br>6.75     | 5.64<br>9.19       |
| T22                     | 2          | 4         | 10.0                           | 10.0                    | 2.8                                | 2.8                       | 25                | 3.80                                     | 4.10             | 6.53               |
| T23                     | 2          | 4         | 10.0                           | 10.0                    | 1.2                                | 1.2                       | 25                | 2.20                                     | 9.56             | 11.28              |
| T24<br>T25              | 3          | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.3<br>2.1                         | 1.3<br>2.1                | 25<br>25          | 2.30<br>3.10                             | 5.89<br>2.74     | 7.20<br>4.01       |
| SUB                     | 8          | 4         | 10.0                           | 10.0                    | 0.5                                | 0.5                       | 25                | 1.50                                     | 5.80             | 4.15               |
| TCC1                    | 3          | 4         | 10.0                           | 10.0                    | 1.5                                | 1.5                       | 25                | 2.50                                     | 5.10             | 6.62               |
| TCC2<br>MM              | 5<br>1     | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 2.0<br>2.5                         | 2.0                       | 25<br>25          | 3.00<br>3.50                             | 2.30<br>9.17     | 3.31<br>14.18      |
| T1 - SS                 | 2.9        | 4         | 10.0                           | 10.0                    | 1.3                                | 1.3                       | 25                | 2.30                                     | 6.17             | 7.54               |
| T5 - SS                 | 2.5        | 4         | 10.0                           | 10.0                    | 2.1                                | 2.1                       | 25                | 3.10                                     | 4.34             | 6.36               |
| T6 - SS<br>T8 - SS      | 7.9<br>0.5 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.5<br>2.0                         | 1.5<br>2.0                | 25<br>25          | 2.50<br>3.00                             | 1.97<br>22.22    | 2.53<br>32.09      |
| T10 -SS                 | 9.8        | 4         | 10.0                           | 10.0                    | 0.9                                | 0.9                       | 25                | 1.90                                     | 2.66             | 2.69               |
| T15 - SS                | 0.7        | 4         | 10.0                           | 10.0                    | 3.4                                | 3.4                       | 25                | 4.40                                     | 9.05             | 15.15              |
| T17 - SS<br>T18 - SS    | 2.2        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.2<br>2.3                         | 1.2<br>2.3                | 25<br>25          | 2.20<br>3.30                             | 8.56<br>4.47     | 10.10<br>6.74      |
| T19 - SS                | 4.6        | 4         | 10.0                           | 10.0                    | 2.0                                | 2.0                       | 25                | 3.00                                     | 2.49             | 3.58               |
| T20 - SS                | 2.9        | 4         | 10.0                           | 10.0                    | 2.0                                | 2.0                       | 25                | 3.00                                     | 3.93             | 5.67               |
| T21 - SS<br>T22 - SS    | 0.6<br>3.7 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.6<br>1.0                         | 1.6<br>1.0                | 25<br>25          | 2.60<br>2.00                             | 23.87<br>6.28    | 31.82<br>6.78      |
| T23 - SS                | 4.9        | 4         | 10.0                           | 10.0                    | 0.8                                | 0.8                       | 25                | 1.80                                     | 5.92             | 5.68               |
| T24 - SS                | 1.0        | 4         | 10.0                           | 10.0                    | 5.9                                | 5.9                       | 25                | 6.90                                     | 3.99             | 7.39               |
| MET - SS<br>WP002       | 0.1<br>2.5 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 2.5<br>3.6                         | 2.5<br>3.6                | 25<br>25          | 3.50<br>4.60                             | 80.00<br>2.53    | 123.76<br>4.28     |
| WP002<br>WP003          | 3.7        | 4         | 10.0                           | 10.0                    | 0.4                                | 0.4                       | 25                | 1.40                                     | 15.45            | 9.54               |
| WP004                   | 3.7        | 4         | 10.0                           | 10.0                    | 0.7                                | 0.7                       | 25                | 1.70                                     | 8.83             | 7.86               |
| WP005<br>WP006          | 3.7<br>1.8 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.8<br>0.3                         | 1.8<br>0.3                | 25<br>25          | 2.80<br>1.30                             | 3.43<br>43.05    | 4.77<br>21.51      |
| WP000                   | 5.4        | 4         | 10.0                           | 10.0                    | 0.3                                | 0.3                       | 25                | 1.30                                     | 14.16            | 7.04               |
| WP008                   | 8.8        | 4         | 10.0                           | 10.0                    | 0.7                                | 0.7                       | 25                | 1.70                                     | 3.80             | 3.35               |
| WP009                   | 7.7        | 4         | 10.0                           | 10.0                    | 0.4                                | 0.4                       | 25                | 1.40                                     | 7.49             | 4.59               |
| WP010<br>WP013          | 2.7<br>9.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 0.3<br>0.4                         | 0.3                       | 25<br>25          | 1.30<br>1.40                             | 27.84<br>6.30    | 13.90<br>3.84      |
| WP014                   | 9.1        | 4         | 10.0                           | 10.0                    | 0.2                                | 0.2                       | 25                | 1.20                                     | 12.82            | 4.57               |
| WP015<br>WP016          | 3.3<br>4.5 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.6<br>0.5                         | 1.6<br>0.5                | 25<br>25          | 2.60<br>1.50                             | 4.40<br>10.19    | 5.85<br>7.33       |
| WP016<br>WP017          | 5.3        | 4         | 10.0                           | 10.0                    | 0.5                                | 0.5                       | 25                | 1.30                                     | 14.62            | 7.33               |
| WP018                   | 6.9        | 4         | 10.0                           | 10.0                    | 1.7                                | 1.7                       | 25                | 2.70                                     | 1.97             | 2.67               |
| WP019                   | 4.6        | 4         | 10.0                           | 10.0                    | 1.2                                | 1.2                       | 25<br>25          | 2.20<br>2.20                             | 4.19<br>9.02     | 4.94               |
| WP020<br>WP021          | 2.1<br>1.1 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.2<br>4.5                         | 1.2<br>4.5                | 25                | 5.50                                     | 9.02<br>4.68     | 10.65<br>8.29      |
| WP022                   | 0.8        | 4         | 10.0                           | 10.0                    | 2.0                                | 2.0                       | 25                | 3.00                                     | 14.29            | 20.63              |
| WP023                   | 0.8<br>3.4 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 0.5<br>1.1                         | 0.5<br>1.1                | 25<br>25          | 1.50<br>2.10                             | 57.15<br>6.08    | 41.26<br>6.89      |
| WP024<br>WP025          | 1.1        | 4         | 10.0                           | 10.0                    | 2.4                                | 2.4                       | 25                | 2.10<br>3.40                             | 6.08<br>8.78     | 6.89<br>13.41      |
| WP026                   | 1.1        | 4         | 10.0                           | 10.0                    | 2.6                                | 2.6                       | 25                | 3.60                                     | 8.10             | 12.67              |
| WP027                   | 2.3        | 4         | 10.0                           | 10.0                    | 0.7                                | 0.7                       | 25                | 1.70                                     | 13.96            | 12.44              |
| WP028<br>WP029          | 3.0<br>2.5 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 2.7                                | 2.7                       | 25<br>25          | 3.70<br>3.30                             | 2.86<br>4.05     | 4.51<br>6.11       |
| WP030                   | 2.6        | 4         | 10.0                           | 10.0                    | 2.7                                | 2.7                       | 25                | 3.70                                     | 3.30             | 5.21               |
| WP031                   | 0.6        | 4         | 10.0                           | 10.0                    | 1.2                                | 1.2                       | 25                | 2.20                                     | 31.83            | 37.60              |
| WP032<br>WP033          | 2.3<br>3.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.0<br>2.0                         | 1.0<br>2.0                | 25<br>25          | 2.00<br>3.00                             | 10.02<br>3.52    | 10.84<br>5.07      |
| WP034                   | 1.1        | 4         | 10.0                           | 10.0                    | 3.1                                | 3.1                       | 25                | 4.10                                     | 6.79             | 11.12              |
| WP035                   | 2.2        | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 6.42             | 8.55               |
| WP036<br>WP037          | 2.2        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 2.0<br>0.5                         | 2.0<br>0.5                | 25<br>25          | 3.00<br>1.50                             | 5.27<br>21.65    | 7.60<br>15.62      |
| WP037<br>WP038          | 1.1        | 4         | 10.0                           | 10.0                    | 2.0                                | 2.0                       | 25                | 3.00                                     | 10.00            | 14.44              |
| WP039                   | 0.9        | 4         | 10.0                           | 10.0                    | 1.5                                | 1.5                       | 25                | 2.50                                     | 17.78            | 23.10              |
| WP040                   | 1.1<br>2.9 | 4         | 10.0                           | 10.0                    | 3.3                                | 3.3                       | 25<br>25          | 4.30                                     | 6.06             | 10.08              |
| WP041<br>WP042          | 2.9        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.8<br>2.6                         | 3.8<br>2.6                | 25<br>25          | 4.80<br>3.60                             | 2.07<br>4.40     | 3.54<br>6.88       |
| WP042<br>WP043          | 1.2        | 4         | 10.0                           | 10.0                    | 2.2                                | 2.2                       | 25                | 3.20                                     | 8.66             | 12.89              |
| WP044                   | 0.6        | 4         | 10.0                           | 10.0                    | 2.2                                | 2.2                       | 25                | 3.20                                     | 17.36            | 25.85              |
| WP045<br>WP046          | 0.6<br>0.5 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.3<br>3.8                         | 3.3                       | 25<br>25          | 4.30<br>4.80                             | 11.58<br>11.70   | 19.24<br>20.05     |
| WP046<br>WP047          | 0.5        | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 27.78            | 37.02              |
| WP048                   | 1.4        | 4         | 10.0                           | 10.0                    | 2.5                                | 2.5                       | 25                | 3.50                                     | 6.67             | 10.32              |
| WP049<br>WP050          | 4.1<br>0.6 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.2<br>4.1                         | 3.2<br>4.1                | 25<br>25          | 4.15<br>5.10                             | 1.77<br>9.76     | 2.91<br>16.99      |
| **1 030                 | 2.5        | 4         | 10.0                           | 10.0                    | 1.5                                | 1.5                       | 25                | 2.50                                     | 6.21             | 8.07               |

| C                       | Calcula    | ted FoS   | of Natur                       | al Peat S              | lopes for                          | Ardderr                | oo Wir            | nd Farm (Dr                        | ained Analy        | ysis)              |
|-------------------------|------------|-----------|--------------------------------|------------------------|------------------------------------|------------------------|-------------------|------------------------------------|--------------------|--------------------|
| Turbine<br>No./Waypoint | Slope      | Design c' | Bulk unit<br>weight of<br>Peat | Unit weight of Water   | 100% Water<br>to height of<br>Peat | Depth of Insitu Peat   | Friction<br>Angle | Equivalent Total Depth of Peat (m) | Factor of Safety   | for Load Condition |
|                         | α (deg)    | c' (kPa)  | γ (kN/m³)                      | γ <sub>w</sub> (kN/m3) | (m)                                | (m)                    | ø' (deg)          | Condition (2)                      | Condition (1)      | Condition (2)      |
| WP054                   | 1.8        | 4         | 10.0                           | 10.0                   | 2.9                                | 2.9                    | 25                | 3.90                               | 100% Water<br>4.31 | 100% Water<br>6.94 |
| WP055                   | 1.5        | 4         | 10.0                           | 10.0                   | 3.0                                | 3.0                    | 25                | 4.00                               | 5.13               | 8.33               |
| WP056<br>WP057          | 0.2<br>2.9 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.4                                | 2.4                    | 25<br>25          | 3.40<br>3.40                       | 41.67<br>3.28      | 63.70<br>5.00      |
| WP058                   | 2.9        | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                    | 25                | 1.80                               | 9.83               | 9.45               |
| WP059<br>WP060          | 0.7<br>0.9 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.6<br>3.3                         | 2.6<br>3.3             | 25<br>25          | 3.60<br>4.30                       | 11.84<br>8.08      | 18.51<br>13.43     |
| WP061                   | 2.6        | 4         | 10.0                           | 10.0                   | 0.9                                | 0.9                    | 25                | 1.90                               | 9.68               | 9.92               |
| WP062<br>WP065          | 1.5<br>3.0 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.4<br>2.6                         | 0.4<br>2.6             | 25<br>25          | 1.40<br>3.60                       | 38.49<br>2.91      | 23.81<br>4.55      |
| WP066                   | 1.7        | 4         | 10.0                           | 10.0                   | 3.3                                | 3.3                    | 25                | 4.30                               | 4.18               | 6.95               |
| WP067<br>WP068          | 3.1<br>5.0 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 4.7<br>0.3                         | 4.7<br>0.3             | 25<br>25          | 5.70<br>1.30                       | 1.58<br>15.44      | 2.82<br>7.69       |
| WP069                   | 3.0        | 4         | 10.0                           | 10.0                   | 7.2                                | 7.2                    | 25                | 8.20                               | 1.06               | 2.02               |
| WP071<br>WP072          | 5.1<br>0.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.5<br>3.1                         | 0.5<br>3.1             | 25<br>25          | 1.50<br>4.10                       | 8.96<br>25.81      | 6.44<br>42.26      |
| WP072<br>WP073          | 4.2        | 4         | 10.0                           | 10.0                   | 4.0                                | 4.0                    | 25                | 5.00                               | 1.38               | 2.38               |
| WP074                   | 3.8        | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                    | 25                | 2.00                               | 6.00               | 6.48               |
| WP075<br>WP076          | 3.8        | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.5<br>1.0                         | 1.5                    | 25<br>25          | 2.50<br>2.00                       | 4.00<br>7.29       | 5.18<br>7.89       |
| WP077                   | 3.5        | 4         | 10.0                           | 10.0                   | 1.2                                | 1.2                    | 25                | 2.20                               | 5.40               | 6.36               |
| WP078<br>WP079          | 3.3<br>1.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.5<br>1.2                         | 0.5<br>1.2             | 25<br>25          | 1.50<br>2.20                       | 14.08<br>15.16     | 10.15<br>17.90     |
| WP080                   | 3.1        | 4         | 10.0                           | 10.0                   | 3.7                                | 3.7                    | 25                | 4.70                               | 1.97               | 3.36               |
| WP081<br>WP082          | 4.2<br>3.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.5<br>2.0                         | 1.5<br>2.0             | 25<br>25          | 2.50<br>3.00                       | 3.62<br>3.52       | 4.69<br>5.07       |
| WP083                   | 1.8        | 4         | 10.0                           | 10.0                   | 0.3                                | 0.3                    | 25                | 1.30                               | 43.05              | 21.51              |
| WP084<br>WP085          | 2.2<br>0.7 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.1<br>2.6                         | 1.1<br>2.6             | 25<br>25          | 2.10<br>3.60                       | 9.34<br>11.84      | 10.59<br>18.51     |
| WP085<br>WP086          | 1.7        | 4         | 10.0                           | 10.0                   | 3.1                                | 3.1                    | 25                | 4.10                               | 4.45               | 7.29               |
| WP087                   | 1.7        | 4         | 10.0                           | 10.0                   | 1.5                                | 1.5                    | 25                | 2.50                               | 9.20               | 11.95              |
| WP088<br>WP089          | 2.9<br>0.6 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.8<br>6.0                         | 0.8<br>6.0             | 25<br>25          | 1.80<br>7.00                       | 9.83<br>6.37       | 9.45<br>11.82      |
| WP090                   | 1.8        | 4         | 10.0                           | 10.0                   | 3.0                                | 3.0                    | 25                | 4.00                               | 4.31               | 6.99               |
| WP091<br>WP092          | 2.8<br>3.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.0<br>0.3                         | 0.3                    | 25<br>25          | 3.00<br>1.30                       | 4.09<br>23.47      | 5.90<br>11.71      |
| WP093                   | 3.3        | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                    | 25                | 1.20                               | 35.20              | 12.68              |
| WP094<br>WP095          | 7.5<br>5.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.4                                | 0.4                    | 25<br>25          | 1.40                               | 7.76<br>14.46      | 4.76<br>7.19       |
| WP095<br>WP096          | 4.9        | 4         | 10.0                           | 10.0                   | 0.5                                | 0.5                    | 25                | 1.30<br>1.50                       | 9.48               | 6.82               |
| WP097                   | 6.1        | 4         | 10.0                           | 10.0                   | 0.1                                | 0.1                    | 25                | 1.10                               | 37.81              | 7.40               |
| WP098<br>WP099          | 5.8<br>6.7 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.3                                | 0.3                    | 25<br>25          | 1.30<br>1.10                       | 13.34<br>34.52     | 6.63<br>6.75       |
| WP100                   | 6.7        | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                    | 25                | 1.20                               | 17.26              | 6.18               |
| WP102<br>WP109          | 8.4        | 4         | 10.0                           | 10.0                   | 1.8                                | peat recorded a<br>1.8 | location<br>25    | 2.80                               | 1.54               | 2.13               |
| WP120                   | 8.6        | 4         | 10.0                           | 10.0                   | 0.1                                | 0.1                    | 25                | 1.10                               | 26.92              | 5.24               |
| WP123<br>WP143          | 8.3<br>0.7 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.2<br>3.6                         | 1.2<br>3.6             | 25<br>25          | 2.20<br>4.60                       | 2.33<br>8.55       | 2.72<br>14.49      |
| WP144                   | 0.7        | 4         | 10.0                           | 10.0                   | 3.9                                | 3.9                    | 25                | 4.90                               | 7.89               | 13.60              |
| WP145                   | 2.4        | 4         | 10.0                           | 10.0<br>10.0           | 3.1<br>1.7                         | 3.1                    | 25                | 4.10<br>2.70                       | 3.08<br>22.47      | 5.03<br>30.64      |
| WP146<br>WP148          | 0.6<br>3.1 | 4         | 10.0<br>10.0                   | 10.0                   | 2.2                                | 2.2                    | 25<br>25          | 3.20                               | 3.38               | 5.02               |
| WP149                   | 0.9        | 4         | 10.0                           | 10.0                   | 1.6                                | 1.6                    | 25                | 2.60                               | 15.63              | 20.83              |
| WP150<br>WP151          | 1.0        | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.4                                | 2.4                    | 25<br>25          | 3.40<br>3.30                       | 9.26<br>8.29       | 14.16<br>12.50     |
| WP157                   | 2.3        | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                    | 25                | 1.80                               | 12.22              | 11.75              |
| WP158<br>WP159          | 2.3        | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.9<br>4.1                         | 0.9<br>4.1             | 25<br>25          | 1.90<br>5.10                       | 10.86<br>2.08      | 11.13<br>3.62      |
| WP160                   | 0.7        | 4         | 10.0                           | 10.0                   | 0.3                                | 0.3                    | 25                | 1.30                               | 102.58             | 51.26              |
| WP161<br>WP162          | 2.3        | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.1                                | 0.1<br>0.4             | 25<br>25          | 1.10<br>1.40                       | 100.16<br>27.06    | 19.70<br>16.73     |
| WP162<br>WP164          | 3.3        | 4         | 10.0                           | 10.0                   | 1.2                                | 1.2                    | 25                | 2.20                               | 5.77               | 6.80               |
| WP165                   | 2.1        | 4         | 10.0                           | 10.0                   | 0.1                                | 0.1                    | 25                | 1.10                               | 108.26             | 21.30              |
| WP166<br>WP169          | 0.6<br>2.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.7<br>3.0                         | 3.0                    | 25<br>25          | 3.70<br>4.00                       | 14.15<br>3.26      | 22.36<br>5.29      |
| WP170                   | 1.4        | 4         | 10.0                           | 10.0                   | 2.7                                | 2.7                    | 25                | 3.70                               | 6.18               | 9.76               |
| WP171<br>WP173          | 0.7<br>0.8 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.2<br>2.7                         | 2.7                    | 25<br>25          | 2.20<br>3.70                       | 27.78<br>10.58     | 32.82<br>16.73     |
| WP174                   | 0.7        | 4         | 10.0                           | 10.0                   | 3.5                                | 3.5                    | 25                | 4.50                               | 8.79               | 14.81              |
| WP175<br>WP176          | 3.0<br>2.0 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.9<br>2.7                         | 0.9<br>2.7             | 25<br>25          | 1.90<br>3.70                       | 8.41<br>4.24       | 8.61<br>6.69       |
| WP176<br>WP177          | 1.5        | 4         | 10.0                           | 10.0                   | 3.9                                | 3.9                    | 25                | 4.90                               | 3.95               | 6.80               |
| WP178                   | 1.3        | 4         | 10.0                           | 10.0                   | 5.8                                | 5.8                    | 25                | 6.80                               | 3.14               | 5.79               |
| WP179<br>B21            | 0.6        | 4         | 10.0                           | 10.0                   | 5.3<br>No                          | 5.3<br>peat recorded a | 25<br>t location  | 6.30                               | 7.55               | 13.75              |
| B22                     |            |           |                                |                        | No                                 | peat recorded a        | location          |                                    |                    |                    |
| B24<br>E3               | 4.5        | 4         | 10.0                           | 10.0                   | 0.3                                | peat recorded a<br>0.3 | location<br>25    | 1.30                               | 16.98              | 8.46               |
| E95                     |            |           |                                |                        | No                                 | peat recorded a        | location          |                                    |                    |                    |
| P100                    | 2.3        | 4         | 10.0                           | 10.0                   | 3.1                                | 3.1                    | 25                | 4.10                               | 3.23               | 5.29               |
| P77<br>P79              | 1.1        | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 4.2<br>3.1                         | 4.2<br>3.1             | 25<br>25          | 5.20<br>4.10                       | 5.01<br>4.17       | 8.77<br>6.82       |
| P87                     | 1.7        | 4         | 10.0                           | 10.0                   | 3.7                                | 3.7                    | 25                | 4.70                               | 3.73               | 6.36               |
| P90<br>P92              | 2.6<br>1.6 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.2<br>1.5                         | 1.2                    | 25<br>25          | 2.20<br>2.50                       | 7.42<br>9.53       | 8.76<br>12.38      |
| P94                     | 1.4        | 4         | 10.0                           | 10.0                   | 0.9                                | 0.9                    | 25                | 1.90                               | 18.53              | 19.00              |
| SUB12<br>SUB21          | 4.9<br>8.4 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 3.5<br>0.3                         | 3.5<br>0.3             | 25<br>25          | 4.50<br>1.30                       | 1.34<br>9.21       | 2.25<br>4.55       |
| SUB24                   | 8.7        | 4         | 10.0                           | 10.0                   | 0.4                                | 0.4                    | 25                | 1.40                               | 6.69               | 4.09               |
| MKOS2<br>MKOS3          | 2.3<br>1.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0                                | 1.0                    | 25<br>25          | 2.00<br>2.00                       | 10.02<br>17.40     | 10.84<br>18.84     |
| INIVOSS                 |            |           | 10.0                           | 10.0                   | 1.0                                |                        |                   |                                    |                    | 18.84              |
| MKOS4                   | 1.3        | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                    | 25                | 2.00                               | 17.40              | 10.04              |

| C                                                                                                                                                       | alcula                                                                                  | ted FoS                                                                                     | of Natur                                                                                                                     | al Peat S                                                                                                                    | lopes for                                                                                      | Ardderr                                                                                        | oo Wir                                                                          | nd Farm (Dı                                                                                                          | ained Analy                                                                                                              | ysis)                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Turbine<br>No./Waypoint                                                                                                                                 | Slope                                                                                   | Design c'                                                                                   | Bulk unit<br>weight of<br>Peat                                                                                               | Unit weight<br>of Water                                                                                                      |                                                                                                | Depth of Insitu Peat                                                                           | Friction<br>Angle                                                               | Equivalent Total<br>Depth of Peat<br>(m)                                                                             |                                                                                                                          | for Load Condition                                                                                                         |
|                                                                                                                                                         | α (deg)                                                                                 | c' (kPa)                                                                                    | γ (kN/m³)                                                                                                                    | γ <sub>w</sub> (kN/m3)                                                                                                       | (m)                                                                                            | (m)                                                                                            | ø' (deg)                                                                        | Condition (2)                                                                                                        | Condition (1)                                                                                                            | Condition (2)                                                                                                              |
| MKOS6                                                                                                                                                   | 2.1                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.0                                                                                            | 1.0                                                                                            | 25                                                                              | 2.00                                                                                                                 | 10.83                                                                                                                    | 100% Water<br>11.71                                                                                                        |
| MKOS7                                                                                                                                                   | 4.1                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.0                                                                                            | 1.0                                                                                            | 25                                                                              | 2.00                                                                                                                 | 5.66                                                                                                                     | 6.11                                                                                                                       |
| MKOS10<br>MKOS11                                                                                                                                        | 2.4<br>1.3                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.1<br>1.2                                                                                     | 1.1                                                                                            | 25<br>25                                                                        | 2.10<br>2.20                                                                                                         | 8.67<br>14.50                                                                                                            | 9.83<br>17.12                                                                                                              |
| MKOS12                                                                                                                                                  | 1.9                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.3                                                                                            | 1.3                                                                                            | 25                                                                              | 2.30                                                                                                                 | 9.33                                                                                                                     | 11.42                                                                                                                      |
| MKOS13<br>MKOS14                                                                                                                                        | 0.9<br>2.1                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.3<br>1.3                                                                                     | 1.3                                                                                            | 25<br>25                                                                        | 2.30<br>2.30                                                                                                         | 19.24<br>8.56                                                                                                            | 23.54<br>10.47                                                                                                             |
| MKOS15                                                                                                                                                  | 1.3                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.4                                                                                            | 1.4                                                                                            | 25                                                                              | 2.40                                                                                                                 | 12.43                                                                                                                    | 15.70                                                                                                                      |
| MKOS16<br>MKOS17                                                                                                                                        | 2.5                                                                                     | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.4<br>1.6                                                                                     | 1.4                                                                                            | 25<br>25                                                                        | 2.40<br>2.60                                                                                                         | 6.66<br>6.26                                                                                                             | 8.40<br>8.34                                                                                                               |
| MKOS18                                                                                                                                                  | 0.9                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.6                                                                                            | 1.6                                                                                            | 25                                                                              | 2.60                                                                                                                 | 15.63                                                                                                                    | 20.83                                                                                                                      |
| MKOS21<br>MKOS23                                                                                                                                        | 1.6<br>1.0                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.8<br>1.8                                                                                     | 1.8                                                                                            | 25<br>25                                                                        | 2.80<br>2.80                                                                                                         | 7.94<br>12.35                                                                                                            | 11.05<br>17.19                                                                                                             |
| MKOS24                                                                                                                                                  | 1.1                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.0                                                                                            | 2.0                                                                                            | 25                                                                              | 3.00                                                                                                                 | 10.00                                                                                                                    | 14.44                                                                                                                      |
| MKOS28<br>MKOS31                                                                                                                                        | 1.0<br>1.0                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 2.2                                                                                            | 2.2                                                                                            | 25<br>25                                                                        | 3.20<br>3.30                                                                                                         | 10.70<br>9.66                                                                                                            | 15.93<br>14.59                                                                                                             |
| MKOS33                                                                                                                                                  | 1.7                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.4                                                                                            | 2.4                                                                                            | 25                                                                              | 3.40                                                                                                                 | 5.56                                                                                                                     | 8.50                                                                                                                       |
| MKOS34<br>MKOS35                                                                                                                                        | 2.5<br>0.6                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 2.5<br>2.5                                                                                     | 2.5                                                                                            | 25<br>25                                                                        | 3.50<br>3.50                                                                                                         | 3.64<br>15.28                                                                                                            | 5.63<br>23.64                                                                                                              |
| MKOS39                                                                                                                                                  | 0.9                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.7                                                                                            | 2.7                                                                                            | 25                                                                              | 3.70                                                                                                                 | 9.26                                                                                                                     | 14.64                                                                                                                      |
| MKOS40                                                                                                                                                  | 1.6                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.7                                                                                            | 2.7                                                                                            | 25                                                                              | 3.70                                                                                                                 | 5.30                                                                                                                     | 8.37                                                                                                                       |
| MKOS42<br>MKOS43                                                                                                                                        | 3.1<br>2.1                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 2.7<br>2.7                                                                                     | 2.7                                                                                            | 25<br>25                                                                        | 3.70<br>3.70                                                                                                         | 2.75<br>4.01                                                                                                             | 4.34<br>6.33                                                                                                               |
| MKOS50                                                                                                                                                  | 1.1                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.9                                                                                            | 2.9                                                                                            | 25                                                                              | 3.90                                                                                                                 | 6.90                                                                                                                     | 11.11                                                                                                                      |
| MKOS52<br>MKOS54                                                                                                                                        | 0.6<br>1.2                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 3.0<br>3.1                                                                                     | 3.0                                                                                            | 25<br>25                                                                        | 4.00<br>4.10                                                                                                         | 12.73<br>6.15                                                                                                            | 20.68<br>10.06                                                                                                             |
| MKOS55                                                                                                                                                  | 3.5                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 3.1                                                                                            | 3.1                                                                                            | 25                                                                              | 4.10                                                                                                                 | 2.09                                                                                                                     | 3.41                                                                                                                       |
| MKOS58<br>MKOS61                                                                                                                                        | 1.8<br>3.0                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 3.3<br>3.5                                                                                     | 3.3<br>3.5                                                                                     | 25<br>25                                                                        | 4.30<br>4.50                                                                                                         | 3.79<br>2.20                                                                                                             | 6.30<br>3.71                                                                                                               |
| MKOS63                                                                                                                                                  | 1.5                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 3.6                                                                                            | 3.6                                                                                            | 25                                                                              | 4.60                                                                                                                 | 4.28                                                                                                                     | 7.25                                                                                                                       |
| MKOS64<br>MKOS66                                                                                                                                        | 1.3<br>1.3                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 3.6<br>3.6                                                                                     | 3.6<br>3.6                                                                                     | 25<br>25                                                                        | 4.60<br>4.60                                                                                                         | 5.05<br>5.05                                                                                                             | 8.56<br>8.56                                                                                                               |
| MKOS67                                                                                                                                                  | 1.3                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 3.6                                                                                            | 3.6                                                                                            | 25                                                                              | 4.60                                                                                                                 | 5.56                                                                                                                     | 9.42                                                                                                                       |
| MKOS72                                                                                                                                                  | 1.8                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 3.7                                                                                            | 3.7                                                                                            | 25                                                                              | 4.70                                                                                                                 | 3.49                                                                                                                     | 5.95                                                                                                                       |
| MKOS75<br>MKOS76                                                                                                                                        | 1.4<br>1.5                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 0.4<br>4.0                                                                                     | 0.4<br>4.0                                                                                     | 25<br>25                                                                        | 1.40<br>5.00                                                                                                         | 40.03<br>3.71                                                                                                            | 24.76<br>6.42                                                                                                              |
| MKOS77                                                                                                                                                  | 0.2                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 4.0                                                                                            | 4.0                                                                                            | 25                                                                              | 5.00                                                                                                                 | 33.33                                                                                                                    | 57.75                                                                                                                      |
| MKOS82<br>MKOS83                                                                                                                                        | 0.6<br>0.6                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 4.5<br>4.5                                                                                     | 4.5<br>4.5                                                                                     | 25<br>25                                                                        | 5.50<br>5.50                                                                                                         | 8.89<br>8.89                                                                                                             | 15.75<br>15.75                                                                                                             |
| MKOS85                                                                                                                                                  | 1.7                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 5.4                                                                                            | 5.4                                                                                            | 25                                                                              | 6.40                                                                                                                 | 2.47                                                                                                                     | 4.51                                                                                                                       |
| MKOS88<br>MKOS89                                                                                                                                        | 0.6<br>2.2                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 5.5<br>0.6                                                                                     | 5.5<br>0.6                                                                                     | 25<br>25                                                                        | 6.50<br>1.60                                                                                                         | 7.27<br>17.57                                                                                                            | 13.33<br>14.26                                                                                                             |
| MKOS90                                                                                                                                                  | 3.8                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 0.8                                                                                            | 0.8                                                                                            | 25                                                                              | 1.80                                                                                                                 | 7.50                                                                                                                     | 7.20                                                                                                                       |
| MKOS91                                                                                                                                                  | 0.6                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 0.8                                                                                            | 0.8                                                                                            | 25                                                                              | 1.80                                                                                                                 | 47.75                                                                                                                    | 45.96                                                                                                                      |
| MKOS94<br>MKOS97                                                                                                                                        | 2.3<br>2.5                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 0.9<br>0.9                                                                                     | 0.9                                                                                            | 25<br>25                                                                        | 1.90<br>1.90                                                                                                         | 11.13<br>10.36                                                                                                           | 11.41<br>10.61                                                                                                             |
| MKOS99                                                                                                                                                  |                                                                                         |                                                                                             |                                                                                                                              |                                                                                                                              |                                                                                                | peat recorded at                                                                               |                                                                                 |                                                                                                                      |                                                                                                                          |                                                                                                                            |
| MKOS100<br>MKOS101                                                                                                                                      |                                                                                         |                                                                                             |                                                                                                                              |                                                                                                                              |                                                                                                | peat recorded at<br>peat recorded at                                                           |                                                                                 |                                                                                                                      |                                                                                                                          |                                                                                                                            |
| MKOS102                                                                                                                                                 |                                                                                         |                                                                                             |                                                                                                                              |                                                                                                                              |                                                                                                | peat recorded at                                                                               |                                                                                 |                                                                                                                      |                                                                                                                          |                                                                                                                            |
| MKOS103<br>MKOS104                                                                                                                                      |                                                                                         |                                                                                             |                                                                                                                              |                                                                                                                              |                                                                                                | peat recorded at<br>peat recorded at                                                           |                                                                                 |                                                                                                                      |                                                                                                                          |                                                                                                                            |
| MKOS108                                                                                                                                                 |                                                                                         | 1 .                                                                                         | 40.0                                                                                                                         | 100                                                                                                                          |                                                                                                | peat recorded at                                                                               |                                                                                 | 2.00                                                                                                                 | 40.04                                                                                                                    | 40.07                                                                                                                      |
| MKOS109<br>MKOS110                                                                                                                                      | 0.9                                                                                     | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 2.0<br>3.0                                                                                     | 3.0                                                                                            | 25<br>25                                                                        | 3.00<br>4.00                                                                                                         | 13.34<br>8.89                                                                                                            | 19.25<br>14.44                                                                                                             |
| MKOS111                                                                                                                                                 | 1.0                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.0                                                                                            | 2.0                                                                                            | 25                                                                              | 3.00                                                                                                                 | 11.11                                                                                                                    | 16.05                                                                                                                      |
| MKOS112<br>MKOS113                                                                                                                                      | 1.4<br>2.7                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 2.0                                                                                            | 2.0                                                                                            | 25<br>25                                                                        | 3.00<br>3.00                                                                                                         | 8.01<br>4.26                                                                                                             | 11.55<br>6.15                                                                                                              |
| MKOS114                                                                                                                                                 | 4.4                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.0                                                                                            | 2.0                                                                                            | 25                                                                              | 3.00                                                                                                                 | 2.61                                                                                                                     | 3.76                                                                                                                       |
| MKOS116<br>MKOS117                                                                                                                                      | 3.8<br>4.2                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.1<br>1.1                                                                                     | 1.1                                                                                            | 25<br>25                                                                        | 2.10<br>2.10                                                                                                         | 5.53<br>5.01                                                                                                             | 6.26<br>5.66                                                                                                               |
| MKOS118                                                                                                                                                 | 1.0                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.2                                                                                            | 1.2                                                                                            | 25                                                                              | 2.20                                                                                                                 | 19.61                                                                                                                    | 23.17                                                                                                                      |
| MKOS119<br>MKOS120                                                                                                                                      | 2.1<br>0.7                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.2<br>1.2                                                                                     | 1.2<br>1.2                                                                                     | 25<br>25                                                                        | 2.20<br>2.20                                                                                                         | 9.27<br>27.78                                                                                                            | 10.94<br>32.82                                                                                                             |
| MKOS120<br>MKOS121                                                                                                                                      | 4.0                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.2                                                                                            | 1.6                                                                                            | 25                                                                              | 2.20                                                                                                                 | 3.59                                                                                                                     | 32.82<br>4.77                                                                                                              |
| MKOS122                                                                                                                                                 | 3.1                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.6                                                                                            | 1.6                                                                                            | 25                                                                              | 2.60                                                                                                                 | 4.56                                                                                                                     | 6.07                                                                                                                       |
| MKOS123<br>MKOS126                                                                                                                                      | 3.7<br>2.5                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.7<br>1.8                                                                                     | 1.7                                                                                            | 25<br>25                                                                        | 2.70<br>2.80                                                                                                         | 3.64<br>5.18                                                                                                             | 4.95<br>7.20                                                                                                               |
| MKOS127                                                                                                                                                 | 1.7                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.8                                                                                            | 1.8                                                                                            | 25                                                                              | 2.80                                                                                                                 | 7.67                                                                                                                     | 10.67                                                                                                                      |
| MKOS128<br>MKOS129                                                                                                                                      | 1.9<br>1.6                                                                              | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 1.8<br>1.8                                                                                     | 1.8                                                                                            | 25<br>25                                                                        | 2.80<br>2.80                                                                                                         | 6.54<br>7.94                                                                                                             | 9.10<br>11.05                                                                                                              |
| MKOS130                                                                                                                                                 | 0.7                                                                                     | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 1.8                                                                                            | 1.8                                                                                            | 25                                                                              | 2.80                                                                                                                 | 18.52                                                                                                                    | 25.78                                                                                                                      |
| MKOS134                                                                                                                                                 | 2.9                                                                                     | 4                                                                                           | 10.0<br>10.0                                                                                                                 | 10.0<br>10.0                                                                                                                 | 2.1<br>2.1                                                                                     | 2.1                                                                                            | 25<br>25                                                                        | 3.10<br>3.10                                                                                                         | 3.82<br>10.59                                                                                                            | 5.60<br>15.53                                                                                                              |
|                                                                                                                                                         | 1 0                                                                                     |                                                                                             | . 10.0                                                                                                                       | 10.0                                                                                                                         | 4.1                                                                                            |                                                                                                |                                                                                 |                                                                                                                      |                                                                                                                          |                                                                                                                            |
| MKOS135<br>MKOS136                                                                                                                                      | 1.0<br>0.9                                                                              | 4                                                                                           | 10.0                                                                                                                         | 10.0                                                                                                                         | 2.1                                                                                            | 2.1                                                                                            | 25                                                                              | 3.10                                                                                                                 | 12.70                                                                                                                    | 18.63                                                                                                                      |
| MKOS135<br>MKOS136<br>MKOS138                                                                                                                           | 0.9<br>1.9                                                                              | 4<br>4                                                                                      | 10.0<br>10.0                                                                                                                 | 10.0                                                                                                                         | 2.2                                                                                            | 2.2                                                                                            | 25                                                                              | 3.20                                                                                                                 | 5.35                                                                                                                     | 7.97                                                                                                                       |
| MKOS135<br>MKOS136                                                                                                                                      | 0.9                                                                                     | 4                                                                                           | 10.0                                                                                                                         |                                                                                                                              |                                                                                                |                                                                                                |                                                                                 |                                                                                                                      |                                                                                                                          |                                                                                                                            |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141<br>MKOS143                                                                                          | 0.9<br>1.9<br>1.7<br>0.8<br>0.8                                                         | 4<br>4<br>4<br>4                                                                            | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                         | 10.0<br>10.0<br>10.0<br>10.0                                                                                                 | 2.2<br>2.2<br>2.2<br>2.3                                                                       | 2.2<br>2.2<br>2.2<br>2.3                                                                       | 25<br>25<br>25<br>25<br>25                                                      | 3.20<br>3.20<br>3.20<br>3.25                                                                                         | 5.35<br>6.27<br>12.99<br>12.70                                                                                           | 7.97<br>9.34<br>19.34<br>19.04                                                                                             |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141                                                                                                     | 0.9<br>1.9<br>1.7<br>0.8                                                                | 4<br>4<br>4<br>4                                                                            | 10.0<br>10.0<br>10.0<br>10.0                                                                                                 | 10.0<br>10.0<br>10.0                                                                                                         | 2.2<br>2.2<br>2.2                                                                              | 2.2<br>2.2<br>2.2                                                                              | 25<br>25<br>25                                                                  | 3.20<br>3.20<br>3.20                                                                                                 | 5.35<br>6.27<br>12.99                                                                                                    | 7.97<br>9.34<br>19.34                                                                                                      |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141<br>MKOS143<br>MKOS144<br>MKOS144<br>MKOS147                                                         | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0                                    | 4<br>4<br>4<br>4<br>4<br>4<br>4                                                             | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                         | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7                                                  | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7                                                  | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                              | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70                                                                 | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86                                                                   | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51                                                                     |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141<br>MKOS141<br>MKOS144<br>MKOS144<br>MKOS144<br>MKOS149                                              | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2                             | 4<br>4<br>4<br>4<br>4<br>4<br>4                                                             | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7                                           | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7                                           | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                  | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70                                                         | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80                                                           | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01                                                             |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141<br>MKOS144<br>MKOS144<br>MKOS147<br>MKOS148<br>MKOS148<br>MKOS150<br>MKOS150                        | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2<br>2.4<br>0.9               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7                             | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7                             | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70                                         | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80<br>3.53<br>9.26                                           | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01<br>5.58<br>14.64                                            |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141<br>MKOS141<br>MKOS144<br>MKOS147<br>MKOS148<br>MKOS149<br>MKOS150<br>MKOS151                        | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2<br>2.4<br>0.9               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7                      | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7                      | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70                                 | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80<br>3.53<br>9.26<br>10.58                                  | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01<br>5.58<br>14.64<br>16.73                                   |
| MKOS135<br>MKOS136<br>MKOS138<br>MKOS140<br>MKOS141<br>MKOS144<br>MKOS144<br>MKOS147<br>MKOS148<br>MKOS148<br>MKOS150<br>MKOS150                        | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2<br>2.4<br>0.9               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7                             | 2.2<br>2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7                             | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70                                         | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80<br>3.53<br>9.26                                           | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01<br>5.58<br>14.64                                            |
| MKOS135 MKOS136 MKOS138 MKOS140 MKOS141 MKOS141 MKOS144 MKOS147 MKOS148 MKOS149 MKOS150 MKOS150 MKOS151 MKOS152 MKOS155 MKOS155 MKOS156                 | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2<br>2.4<br>0.9<br>0.8<br>1.3 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                     | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                                      | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8<br>2.8<br>2.9 | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8<br>2.8<br>2.9 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.80<br>3.80<br>3.90         | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80<br>3.53<br>9.26<br>10.58<br>6.21<br>6.50<br>7.26          | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01<br>5.58<br>14.64<br>16.73<br>9.91<br>10.36<br>11.69         |
| MKOS135 MKOS136 MKOS138 MKOS140 MKOS141 MKOS141 MKOS143 MKOS144 MKOS147 MKOS148 MKOS149 MKOS150 MKOS150 MKOS151 MKOS152 MKOS154 MKOS155                 | 0.9<br>1.9<br>1.7<br>0.8<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2<br>2.4<br>0.9<br>0.8<br>1.3 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                          | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8        | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8        | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.80                         | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80<br>3.53<br>9.26<br>10.58<br>6.21<br>6.50                  | 7.97<br>9.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01<br>5.58<br>14.64<br>16.73<br>9.91<br>10.36                           |
| MKOS135 MKOS136 MKOS138 MKOS140 MKOS141 MKOS141 MKOS144 MKOS147 MKOS148 MKOS149 MKOS151 MKOS150 MKOS151 MKOS152 MKOS154 MKOS154 MKOS155 MKOS156 MKOS156 | 0.9<br>1.9<br>1.7<br>0.8<br>2.0<br>1.8<br>3.0<br>2.2<br>2.4<br>0.9<br>0.8<br>1.3<br>1.3 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                                      | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                                      | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8<br>2.8<br>2.9 | 2.2<br>2.2<br>2.3<br>2.3<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.7<br>2.8<br>2.8<br>2.9 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 3.20<br>3.20<br>3.20<br>3.25<br>3.30<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70<br>3.80<br>3.80<br>3.90<br>1.30 | 5.35<br>6.27<br>12.99<br>12.70<br>4.98<br>4.78<br>2.86<br>3.80<br>3.53<br>9.26<br>10.58<br>6.21<br>6.50<br>7.26<br>17.42 | 7.97<br>9.34<br>19.34<br>19.04<br>7.50<br>7.56<br>4.51<br>6.01<br>5.58<br>14.64<br>16.73<br>9.91<br>10.36<br>11.69<br>8.68 |

|                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            |                                                                                         |                                                                                 |                                                                                                                                              | ained Analy                                                                                                                                      |                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Turbine<br>No./Waypoint                                                                                                                                                                                                                        | Slope                                                                                                                      | Design c'                                                                                   | Bulk unit<br>weight of<br>Peat                                                                                       | Unit weight<br>of Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100% Water<br>to height of<br>Peat                                                                                         | Depth of In-<br>situ Peat                                                               | Friction<br>Angle                                                               | Equivalent Total<br>Depth of Peat<br>(m)                                                                                                     | Factor of Safety                                                                                                                                 | for Load Condition                                                                                                                               |
|                                                                                                                                                                                                                                                | α (deg)                                                                                                                    | c' (kPa)                                                                                    | γ (kN/m³)                                                                                                            | γ <sub>w</sub> (kN/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (m)                                                                                                                        | (m)                                                                                     | ø' (deg)                                                                        | Condition (2)                                                                                                                                | Condition (1)                                                                                                                                    | Condition (2)                                                                                                                                    |
| MKOS162                                                                                                                                                                                                                                        | 0.9                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2                                                                                                                        | 3.2                                                                                     | 25                                                                              | 4.20                                                                                                                                         | 7.81                                                                                                                                             | 100% Water                                                                                                                                       |
| MKOS167                                                                                                                                                                                                                                        | 1.4                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.6                                                                                                                        | 3.6                                                                                     | 25                                                                              | 4.60                                                                                                                                         | 4.45                                                                                                                                             | 7.54                                                                                                                                             |
| MKOS169<br>MKOS171                                                                                                                                                                                                                             | 1.3                                                                                                                        | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7<br>3.8                                                                                                                 | 3.7                                                                                     | 25<br>25                                                                        | 4.70<br>4.80                                                                                                                                 | 4.92<br>5.85                                                                                                                                     | 8.38<br>10.03                                                                                                                                    |
| MKOS171                                                                                                                                                                                                                                        | 1.1                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.8                                                                                                                        | 3.8                                                                                     | 25                                                                              | 4.80                                                                                                                                         | 5.54                                                                                                                                             | 9.50                                                                                                                                             |
| MKOS173                                                                                                                                                                                                                                        | 0.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0                                                                                                                        | 4.0                                                                                     | 25                                                                              | 5.00                                                                                                                                         | 7.69                                                                                                                                             | 13.33                                                                                                                                            |
| MKOS174                                                                                                                                                                                                                                        | 3.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4                                                                                                                        | 0.4                                                                                     | 25                                                                              | 1.40                                                                                                                                         | 15.69                                                                                                                                            | 9.69                                                                                                                                             |
| MKOS175                                                                                                                                                                                                                                        | 0.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                                                                                        | 4.5                                                                                     | 25                                                                              | 5.50                                                                                                                                         | 6.84                                                                                                                                             | 12.12                                                                                                                                            |
| MKOS176<br>MKOS177                                                                                                                                                                                                                             | 0.7<br>1.8                                                                                                                 | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>4.5                                                                                                                 | 4.5<br>4.5                                                                              | 25<br>25                                                                        | 5.50<br>5.50                                                                                                                                 | 6.84<br>2.87                                                                                                                                     | 12.12<br>5.08                                                                                                                                    |
| MKOS177                                                                                                                                                                                                                                        | 1.6                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                                                                                        | 4.5                                                                                     | 25                                                                              | 5.50                                                                                                                                         | 3.18                                                                                                                                             | 5.63                                                                                                                                             |
| MKOS182                                                                                                                                                                                                                                        | 0.1                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4                                                                                                                        | 5.4                                                                                     | 25                                                                              | 6.40                                                                                                                                         | 74.07                                                                                                                                            | 135.36                                                                                                                                           |
| MKOS185                                                                                                                                                                                                                                        | 0.2                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8                                                                                                                        | 0.8                                                                                     | 25                                                                              | 1.80                                                                                                                                         | 125.00                                                                                                                                           | 120.32                                                                                                                                           |
| MKOS187<br>MKOS188                                                                                                                                                                                                                             | 3.4<br>6.6                                                                                                                 | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                        | 0.8                                                                                     | 25<br>25                                                                        | 1.80<br>1.90                                                                                                                                 | 8.36<br>3.92                                                                                                                                     | 8.03<br>3.99                                                                                                                                     |
| MKOS188                                                                                                                                                                                                                                        | 3.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9                                                                                                                        | 0.9                                                                                     | 25                                                                              | 1.90                                                                                                                                         | 6.87                                                                                                                                             | 7.03                                                                                                                                             |
| MKOS194                                                                                                                                                                                                                                        | 3.7                                                                                                                        |                                                                                             | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            | peat recorded at                                                                        |                                                                                 | 1.50                                                                                                                                         | 0.07                                                                                                                                             | 7.03                                                                                                                                             |
| MKOS200                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS201                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS203                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS204                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS205<br>MKOS206                                                                                                                                                                                                                             |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at<br>peat recorded at                                                    |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS207                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS208                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS209                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS210<br>MKOS211                                                                                                                                                                                                                             |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at<br>peat recorded at                                                    |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS211<br>MKOS212                                                                                                                                                                                                                             |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS213                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS214                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                         | peat recorded at                                                                        | location                                                                        |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS215                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS216                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS217<br>MKOS224                                                                                                                                                                                                                             | 2.9                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7                                                                                                                        | peat recorded at<br>1.7                                                                 | location<br>25                                                                  | 2.70                                                                                                                                         | 4.63                                                                                                                                             | 6.30                                                                                                                                             |
| MKOS231                                                                                                                                                                                                                                        | 1.9                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                                                        | 2.0                                                                                     | 25                                                                              | 3.00                                                                                                                                         | 6.07                                                                                                                                             | 8.75                                                                                                                                             |
| MKOS232                                                                                                                                                                                                                                        | 0.2                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                                                        | 2.0                                                                                     | 25                                                                              | 3.00                                                                                                                                         | 66.67                                                                                                                                            | 96.26                                                                                                                                            |
| MKOS235                                                                                                                                                                                                                                        | 0.1                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                        | 2.7                                                                                     | 25                                                                              | 3.70                                                                                                                                         | 74.07                                                                                                                                            | 117.07                                                                                                                                           |
| MKOS242                                                                                                                                                                                                                                        | 0.6                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.6                                                                                                                        | 3.6                                                                                     | 25                                                                              | 4.60                                                                                                                                         | 10.10                                                                                                                                            | 17.12                                                                                                                                            |
| MKOS244<br>MKOS245                                                                                                                                                                                                                             | 0.6<br>3.5                                                                                                                 | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1<br>4.3                                                                                                                 | 4.1                                                                                     | 25<br>25                                                                        | 5.10<br>5.30                                                                                                                                 | 9.76<br>1.51                                                                                                                                     | 16.99<br>2.64                                                                                                                                    |
| MKOS250                                                                                                                                                                                                                                        | 2.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9                                                                                                                        | 0.9                                                                                     | 25                                                                              | 1.90                                                                                                                                         | 9.48                                                                                                                                             | 9.71                                                                                                                                             |
| MKOS253                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                         | peat recorded at                                                                        | location                                                                        |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS256                                                                                                                                                                                                                                        | 0.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6                                                                                                                        | 1.6                                                                                     | 25                                                                              | 2.60                                                                                                                                         | 20.84                                                                                                                                            | 27.77                                                                                                                                            |
| MKOS257<br>MKOS258                                                                                                                                                                                                                             | 0.7                                                                                                                        | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9<br>1.7                                                                                                                 | 1.9<br>1.7                                                                              | 25<br>25                                                                        | 2.90<br>2.70                                                                                                                                 | 16.20<br>19.61                                                                                                                                   | 22.98<br>26.74                                                                                                                                   |
| MKOS259                                                                                                                                                                                                                                        | 0.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            | peat recorded at                                                                        |                                                                                 | 2.70                                                                                                                                         | 19.01                                                                                                                                            | 20.74                                                                                                                                            |
| MKOS265                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | peat recorded at                                                                        |                                                                                 |                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                  |
| MKOS276                                                                                                                                                                                                                                        | 2.5                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6                                                                                                                        | 1.6                                                                                     | 25                                                                              | 2.60                                                                                                                                         | 5.69                                                                                                                                             | 7.58                                                                                                                                             |
| MKOS277                                                                                                                                                                                                                                        | 2.6                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                        | 1.0                                                                                     | 25                                                                              | 2.00                                                                                                                                         | 8.71                                                                                                                                             | 9.43                                                                                                                                             |
| MKOS278<br>MKOS282                                                                                                                                                                                                                             | 2.1<br>5.1                                                                                                                 | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0<br>1.0                                                                                                                 | 1.0                                                                                     | 25<br>25                                                                        | 2.00<br>2.00                                                                                                                                 | 11.13<br>4.48                                                                                                                                    | 12.04<br>4.83                                                                                                                                    |
| MKOS283                                                                                                                                                                                                                                        | 7.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                        | 1.0                                                                                     | 25                                                                              | 2.00                                                                                                                                         | 3.00                                                                                                                                             | 3.21                                                                                                                                             |
| MKOS284                                                                                                                                                                                                                                        | 8.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                        | 1.0                                                                                     | 25                                                                              | 2.00                                                                                                                                         | 2.68                                                                                                                                             | 2.86                                                                                                                                             |
| MKOS286                                                                                                                                                                                                                                        | 1.8                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                        | 1.0                                                                                     | 25                                                                              | 2.00                                                                                                                                         | 12.51                                                                                                                                            | 13.54                                                                                                                                            |
| MKOS288<br>MKOS289                                                                                                                                                                                                                             | 2.1                                                                                                                        | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                        | 1.1                                                                                     | 25<br>25                                                                        | 2.05<br>2.10                                                                                                                                 | 10.31<br>9.34                                                                                                                                    | 11.43<br>10.59                                                                                                                                   |
| MKOS290                                                                                                                                                                                                                                        | 2.6                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                        | 1.1                                                                                     | 25                                                                              | 2.10                                                                                                                                         | 8.10                                                                                                                                             | 9.18                                                                                                                                             |
| MKOS292                                                                                                                                                                                                                                        | 3.8                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2                                                                                                                        | 1.2                                                                                     | 25                                                                              | 2.20                                                                                                                                         | 5.00                                                                                                                                             | 5.89                                                                                                                                             |
| MKOS293                                                                                                                                                                                                                                        | 8.4                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2                                                                                                                        | 1.2                                                                                     | 25                                                                              | 2.20                                                                                                                                         | 2.32                                                                                                                                             | 2.71                                                                                                                                             |
| MKOS294<br>MKOS298                                                                                                                                                                                                                             | 7.6<br>4.8                                                                                                                 | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3<br>1.4                                                                                                                 | 1.3                                                                                     | 25<br>25                                                                        | 2.30<br>2.40                                                                                                                                 | 2.35<br>3.43                                                                                                                                     | 2.86<br>4.31                                                                                                                                     |
| MKOS305                                                                                                                                                                                                                                        | 8.0                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                                                                                                                        | 1.4                                                                                     | 25                                                                              | 2.40                                                                                                                                         | 1.62                                                                                                                                             | 2.23                                                                                                                                             |
| MKOS306                                                                                                                                                                                                                                        | 0.7                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                        | 1.8                                                                                     | 25                                                                              | 2.80                                                                                                                                         | 17.10                                                                                                                                            | 23.80                                                                                                                                            |
| MKOS308                                                                                                                                                                                                                                        | 2.1                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                        | 1.8                                                                                     | 25                                                                              | 2.80                                                                                                                                         | 6.01                                                                                                                                             | 8.37                                                                                                                                             |
| MKOS312                                                                                                                                                                                                                                        | 5.6<br>0.1                                                                                                                 | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                        | 1.9                                                                                     | 25                                                                              | 2.90                                                                                                                                         | 2.17                                                                                                                                             | 3.06                                                                                                                                             |
| MKOS320<br>MKOS321                                                                                                                                                                                                                             | 6.5                                                                                                                        | 4                                                                                           | 10.0<br>10.0                                                                                                         | 10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0<br>0.2                                                                                                                 | 0.2                                                                                     | 25<br>25                                                                        | 3.00<br>1.20                                                                                                                                 | 200.00<br>17.77                                                                                                                                  | 288.77<br>6.37                                                                                                                                   |
|                                                                                                                                                                                                                                                | 4.0                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                        | 0.2                                                                                     | 25                                                                              | 1.20                                                                                                                                         | 28.71                                                                                                                                            | 10.34                                                                                                                                            |
| MKOS322                                                                                                                                                                                                                                        | 1.0                                                                                                                        | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                        | 2.3                                                                                     | 25                                                                              | 3.30                                                                                                                                         | 9.66                                                                                                                                             | 14.59                                                                                                                                            |
| MKOS329                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                             | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4                                                                                                                        | 2.4                                                                                     | 25                                                                              | 3.40                                                                                                                                         | 7.25<br>1.85                                                                                                                                     | 11.08                                                                                                                                            |
| MKOS329<br>MKOS331                                                                                                                                                                                                                             | 1.3                                                                                                                        | 4                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | 2 -                                                                                     | 25                                                                              | 3.50                                                                                                                                         |                                                                                                                                                  | 2.85                                                                                                                                             |
| MKOS329<br>MKOS331<br>MKOS335                                                                                                                                                                                                                  | 1.3<br>5.0                                                                                                                 | 4                                                                                           | 10.0                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                        | 2.5<br>0.3                                                                              | 25<br>25                                                                        | 3.50<br>1.25                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337                                                                                                                                                                                                       | 1.3                                                                                                                        |                                                                                             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | 2.5<br>0.3<br>0.3                                                                       | 25<br>25<br>25                                                                  | 3.50<br>1.25<br>1.25                                                                                                                         | 14.10<br>15.55                                                                                                                                   | 6.06<br>6.70                                                                                                                                     |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341                                                                                                                                                                                 | 1.3<br>5.0<br>6.6<br>5.9<br>6.8                                                                                            | 4<br>4<br>4<br>4                                                                            | 10.0<br>10.0<br>10.0<br>10.0                                                                                         | 10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5<br>0.3<br>0.3<br>2.6                                                                                                   | 0.3<br>0.3<br>2.6                                                                       | 25<br>25<br>25                                                                  | 1.25<br>1.25<br>3.60                                                                                                                         | 14.10<br>15.55<br>1.31                                                                                                                           | 6.06<br>6.70<br>2.03                                                                                                                             |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342                                                                                                                                                                      | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4                                                                                     | 4<br>4<br>4<br>4<br>4                                                                       | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6                                                                                            | 0.3<br>0.3<br>2.6<br>2.6                                                                | 25<br>25<br>25<br>25                                                            | 1.25<br>1.25<br>3.60<br>3.60                                                                                                                 | 14.10<br>15.55<br>1.31<br>2.62                                                                                                                   | 6.06<br>6.70<br>2.03<br>4.09                                                                                                                     |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344                                                                                                                                                           | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3                                                                              | 4<br>4<br>4<br>4<br>4<br>4                                                                  | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7                                                                                     | 0.3<br>0.3<br>2.6<br>2.6<br>2.7                                                         | 25<br>25<br>25<br>25<br>25<br>25                                                | 1.25<br>1.25<br>3.60<br>3.60<br>3.70                                                                                                         | 14.10<br>15.55<br>1.31<br>2.62<br>1.62                                                                                                           | 6.06<br>6.70<br>2.03<br>4.09<br>2.55                                                                                                             |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS344                                                                                                                                                | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4                                                                                     | 4<br>4<br>4<br>4<br>4                                                                       | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6                                                                                            | 0.3<br>0.3<br>2.6<br>2.6                                                                | 25<br>25<br>25<br>25                                                            | 1.25<br>1.25<br>3.60<br>3.60                                                                                                                 | 14.10<br>15.55<br>1.31<br>2.62                                                                                                                   | 6.06<br>6.70<br>2.03<br>4.09                                                                                                                     |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344                                                                                                                                                           | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3                                                                              | 4<br>4<br>4<br>4<br>4<br>4                                                                  | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8                                                                              | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8                                                  | 25<br>25<br>25<br>25<br>25<br>25<br>25                                          | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80                                                                                                 | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72                                                                                                   | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12                                                                                                     |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS337<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS344<br>MKOS348<br>MKOS348<br>MKOS350<br>MKOS350                                                                                                    | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8                                                  | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                   | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0                                                         | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0                             | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25      | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00                                                                                 | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73                                                                           | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78                                                                                    |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS337<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS344<br>MKOS348<br>MKOS349<br>MKOS350<br>MKOS351                                                                                                    | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8                                                  | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0                                                         | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2                      | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00                                                                         | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29                                                                   | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43                                                                    |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS344<br>MKOS349<br>MKOS350<br>MKOS351<br>MKOS351<br>MKOS351                                                                                         | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8<br>2.2                                           | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2                                                  | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2               | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00<br>4.20                                                                 | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93                                                           | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43                                                                    |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS344<br>MKOS349<br>MKOS350<br>MKOS350<br>MKOS351<br>MKOS351                                                                                         | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8<br>2.2<br>3.7                                    | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                    | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2                                           | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2               | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00<br>4.20<br>4.20                                                         | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93                                                           | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43<br>3.18<br>65.63                                                   |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS344<br>MKOS344<br>MKOS349<br>MKOS350<br>MKOS351<br>MKOS351<br>MKOS351                                                                                         | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8<br>2.2                                           | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2                                                  | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2               | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00<br>4.20                                                                 | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93                                                           | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43                                                                    |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS348<br>MKOS349<br>MKOS350<br>MKOS350<br>MKOS350<br>MKOS351<br>MKOS351<br>MKOS350<br>MKOS350<br>MKOS350<br>MKOS350<br>MKOS360<br>MKOS360<br>MKOS361 | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.2<br>3.7<br>0.2<br>0.1<br>1.4<br>2.1               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2<br>3.4<br>3.4                             | 0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2<br>3.4<br>3.4 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00<br>4.20<br>4.20<br>4.40<br>4.40<br>4.40                                 | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93<br>39.22<br>58.82<br>4.71<br>3.18                         | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43<br>3.18<br>65.63<br>98.44<br>7.88                                  |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS349<br>MKOS349<br>MKOS350<br>MKOS351<br>MKOS351<br>MKOS351<br>MKOS354<br>MKOS350<br>MKOS354<br>MKOS355<br>MKOS362<br>MKOS360                       | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8<br>2.2<br>0.1<br>1.4<br>2.1<br>3.7               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2<br>3.4<br>3.4<br>3.4                      | 0.3 0.3 2.6 2.6 2.7 2.8 2.9 3.0 3.0 3.2 3.2 3.4 3.4 3.4 3.4 3.4                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>4.00<br>4.00<br>4.20<br>4.20<br>4.40<br>4.40<br>4.40<br>4.4                          | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93<br>39.22<br>58.82<br>4.71<br>3.18<br>1.82                 | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43<br>3.18<br>65.63<br>98.44<br>7.88<br>5.32                          |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS344<br>MKOS348<br>MKOS349<br>MKOS351<br>MKOS351<br>MKOS350<br>MKOS351<br>MKOS351<br>MKOS351<br>MKOS361<br>MKOS361                                                        | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8<br>2.2<br>3.7<br>0.2<br>0.1<br>1.4<br>2.1<br>3.7 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2<br>3.4<br>3.4<br>3.4<br>3.4               | 0.3 0.3 2.6 2.6 2.7 2.8 2.9 3.0 3.0 3.2 3.2 3.4 3.4 3.4 3.5                             | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00<br>4.20<br>4.20<br>4.40<br>4.40<br>4.40<br>4.40<br>4.40<br>4.40         | 14.10 15.55 1.31 2.62 1.62 5.72 9.85 1.77 2.73 3.29 1.93 39.22 58.82 4.71 3.18 1.82 9.53                                                         | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43<br>3.18<br>65.63<br>98.44<br>7.88<br>5.32<br>3.03                  |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS344<br>MKOS349<br>MKOS350<br>MKOS350<br>MKOS351<br>MKOS355<br>MKOS355<br>MKOS355<br>MKOS350<br>MKOS350<br>MKOS360<br>MKOS360<br>MKOS360                       | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.8<br>2.2<br>0.1<br>1.4<br>2.1<br>3.7               | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                              | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2<br>3.4<br>3.4<br>3.4                      | 0.3 0.3 2.6 2.6 2.7 2.8 2.9 3.0 3.0 3.2 3.2 3.4 3.4 3.4 3.4 3.4                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>1.25<br>3.60<br>3.60<br>3.70<br>3.80<br>4.00<br>4.00<br>4.20<br>4.20<br>4.40<br>4.40<br>4.40<br>4.4                          | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93<br>39.22<br>58.82<br>4.71<br>3.18<br>1.82                 | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43<br>3.18<br>65.63<br>98.44<br>7.88<br>5.32                          |
| MKOS329<br>MKOS331<br>MKOS335<br>MKOS337<br>MKOS338<br>MKOS341<br>MKOS342<br>MKOS348<br>MKOS348<br>MKOS350<br>MKOS350<br>MKOS351<br>MKOS351<br>MKOS355<br>MKOS356<br>MKOS360<br>MKOS360<br>MKOS361<br>MKOS362<br>MKOS362<br>MKOS362            | 1.3<br>5.0<br>6.6<br>5.9<br>6.8<br>3.4<br>5.3<br>1.4<br>0.8<br>4.5<br>2.2<br>3.7<br>0.2<br>0.1<br>1.4<br>2.1<br>3.7        | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                              | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5<br>0.3<br>0.3<br>2.6<br>2.6<br>2.7<br>2.8<br>2.9<br>3.0<br>3.0<br>3.2<br>3.2<br>3.4<br>3.4<br>3.4<br>3.4<br>3.5<br>3.5 | 0.3 0.3 2.6 2.6 2.7 2.8 2.9 3.0 3.0 3.2 3.2 3.4 3.4 3.4 3.5 3.5                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 1.25<br>1.25<br>3.60<br>3.70<br>3.80<br>3.90<br>4.00<br>4.00<br>4.20<br>4.20<br>4.40<br>4.40<br>4.40<br>4.40<br>4.40<br>4.40<br>4.50<br>4.50 | 14.10<br>15.55<br>1.31<br>2.62<br>1.62<br>5.72<br>9.85<br>1.72<br>2.73<br>3.29<br>1.93<br>39.22<br>58.82<br>4.71<br>3.18<br>1.82<br>9.53<br>1.57 | 6.06<br>6.70<br>2.03<br>4.09<br>2.55<br>9.12<br>15.87<br>2.78<br>4.42<br>5.43<br>3.18<br>65.63<br>98.44<br>7.88<br>5.32<br>3.03<br>16.04<br>2.64 |

| Turbine<br>No./Waypoint                  | Slope       | Design c' | Bulk unit<br>weight of<br>Peat | Unit weight of Water   | 100% Water<br>to height of | Depth of In-<br>situ Peat            | Friction<br>Angle | <b>Equivalent Total</b> | Factor of Safety | for Load Condition |
|------------------------------------------|-------------|-----------|--------------------------------|------------------------|----------------------------|--------------------------------------|-------------------|-------------------------|------------------|--------------------|
|                                          |             |           |                                |                        | Peat                       |                                      | Aligie            | Depth of Peat<br>(m)    |                  |                    |
|                                          | α (deg)     | c' (kPa)  | γ (kN/m³)                      | γ <sub>w</sub> (kN/m3) | (m)                        | (m)                                  | ø' (deg)          | Condition (2)           | Condition (1)    | Condition (2)      |
| MKOS377                                  | 1.2         | 4         | 10.0                           | 10.0                   | 3.5                        | 3.5                                  | 25                | 4.50                    | 5.44             | 9.17               |
| MKOS379                                  | 3.1         | 4         | 10.0                           | 10.0                   | 3.5                        | 3.5                                  | 25                | 4.50                    | 2.08             | 3.51               |
| MKOS381<br>MKOS383                       | 0.2         | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 3.5<br>3.5                 | 3.5<br>3.5                           | 25<br>25          | 4.50<br>4.50            | 38.10<br>38.10   | 64.17<br>64.17     |
| MKOS384                                  | 0.2         | 4         | 10.0                           | 10.0                   | 3.5                        | 3.5                                  | 25                | 4.50                    | 7.14             | 12.03              |
| MKOS385                                  | 1.4         | 4         | 10.0                           | 10.0                   | 3.5                        | 3.5                                  | 25                | 4.50                    | 4.57             | 7.70               |
| MKOS386<br>MKOS398                       | 6.3         | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 3.5<br>0.4                 | 3.5<br>0.4                           | 25<br>25          | 4.50<br>1.40            | 8.16<br>9.12     | 13.75<br>5.61      |
| MKOS399                                  | 5.8         | 4         | 10.0                           | 10.0                   | 0.4                        | 0.4                                  | 25                | 1.40                    | 10.00            | 6.16               |
| MKOS401                                  | 8.3         | 4         | 10.0                           | 10.0                   | 0.5                        | 0.5                                  | 25                | 1.50                    | 5.63             | 4.02               |
| MKOS402<br>MKOS403                       | 7.8<br>0.6  | 4         | 10.0                           | 10.0<br>10.0           | 0.5<br>0.5                 | 0.5<br>0.5                           | 25<br>25          | 1.50<br>1.50            | 5.95<br>76.40    | 4.25<br>55.15      |
| MKOS406                                  | 10.9        | 4         | 10.0                           | 10.0                   | 0.6                        | 0.6                                  | 25                | 1.60                    | 3.60             | 2.87               |
| MKOS407                                  | 9.3         | 4         | 10.0                           | 10.0                   | 0.6                        | 0.6                                  | 25                | 1.60                    | 4.20             | 3.36               |
| MKOS408<br>MKOS410                       | 0.6<br>6.6  | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.6<br>0.6                 | 0.6<br>0.6                           | 25<br>25          | 1.60<br>1.60            | 63.67<br>5.87    | 51.70<br>4.74      |
| MKOS411                                  | 4.4         | 4         | 10.0                           | 10.0                   | 0.7                        | 0.7                                  | 25                | 1.70                    | 7.47             | 6.64               |
| MKOS413                                  | 5.4         | 4         | 10.0                           | 10.0                   | 0.8                        | 0.8                                  | 25                | 1.80                    | 5.37             | 5.14               |
| MKOS414<br>MKOS417                       | 7.4<br>10.6 | 4         | 10.0                           | 10.0<br>10.0           | 0.8                        | 0.8                                  | 25<br>25          | 1.80<br>1.90            | 3.91<br>2.46     | 3.73<br>2.48       |
| MKOS419                                  | 7.5         | 4         | 10.0                           | 10.0                   | 0.9                        | 0.9                                  | 25                | 1.90                    | 3.45             | 3.51               |
| MKOS420                                  | 4.5         | 4         | 10.0                           | 10.0                   | 0.9                        | 0.9                                  | 25                | 1.90                    | 5.73             | 5.86               |
| MKOS425<br>MKOS427                       | 4.2<br>5.7  | 4         | 10.0                           | 10.0<br>10.0           | 0.9<br>0.9                 | 0.9                                  | 25<br>25          | 1.90<br>1.90            | 6.12<br>4.53     | 6.26<br>4.63       |
| MKOS428                                  | 4.7         | 4         | 10.0                           | 10.0                   | 0.9                        | 0.9                                  | 25                | 1.90                    | 5.39             | 5.51               |
| MKOS429                                  |             |           |                                |                        |                            | peat recorded at                     |                   |                         |                  |                    |
| MKOS430<br>MKOS432                       |             |           |                                |                        |                            | peat recorded at<br>peat recorded at |                   |                         |                  |                    |
| MKOS432                                  |             |           |                                |                        |                            | peat recorded at                     |                   |                         |                  |                    |
| MKOS435                                  |             |           |                                |                        |                            | peat recorded at                     |                   |                         |                  |                    |
| MKOS436<br>MKOS437                       |             |           |                                |                        |                            | peat recorded at<br>peat recorded at |                   |                         |                  |                    |
| MKOS442                                  | 7.4         | 4         | 10.0                           | 10.0                   | 0.8                        | 0.8                                  | 25                | 1.80                    | 3.94             | 3.76               |
| MKOS444                                  | 5.3         | 4         | 10.0                           | 10.0                   | 1.9                        | 1.9                                  | 25                | 2.90                    | 2.31             | 3.26               |
| MKOS446<br>MKOS448                       | 0.9         | 4         | 10.0                           | 10.0<br>10.0           | 2.8<br>2.9                 | 2.8                                  | 25<br>25          | 3.80<br>3.90            | 5.96<br>8.62     | 9.50<br>13.88      |
| MKOS450                                  | 1.3         | 4         | 10.0                           | 10.0                   | 4.0                        | 4.0                                  | 25                | 5.00                    | 4.55             | 7.88               |
| MKOS455                                  | 7.1         | 4         | 10.0                           | 10.0                   | 0.5                        | 0.5                                  | 25                | 1.50                    | 6.50             | 4.65               |
| MKOS456<br>MKOS484                       | 5.5<br>3.4  | 4         | 10.0                           | 10.0<br>10.0           | 1.8<br>1.1                 | 1.8                                  | 25<br>25          | 2.80<br>2.10            | 2.34<br>6.18     | 3.24<br>7.00       |
| MKOS485                                  | 5.7         | 7         | 10.0                           | 10.0                   |                            | peat recorded at                     |                   | 2.10                    | 0.10             | 7.00               |
| MKOS488                                  | 6.2         | 4         | 10.0                           | 10.0                   | 0.1                        | 0.1                                  | 25                | 1.10                    | 37.47            | 7.33               |
| MKOS489<br>MKOS490                       | 3.3         | 4         | 10.0                           | 10.0                   | 1.2                        | peat recorded at<br>1.2              | location<br>25    | 2.20                    | 5.77             | 6.80               |
| MKOS491                                  | 2.9         | 4         | 10.0                           | 10.0                   | 3.8                        | 3.8                                  | 25                | 4.80                    | 2.07             | 3.54               |
| MKOS492                                  | 3.1         | 4         | 10.0                           | 10.0                   | 2.7                        | 2.7                                  | 25                | 3.70                    | 2.70             | 4.26               |
| MKOS495<br>MKOS496                       | 2.9<br>0.8  | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.5                        | 2.5                                  | 25<br>25          | 3.50<br>3.30            | 3.15<br>12.42    | 4.86<br>18.75      |
| MKOS497                                  | 0.8         | 4         | 10.0                           | 10.0                   | 1.8                        | 1.8                                  | 25                | 2.80                    | 15.88            | 22.10              |
| MKOS498                                  | 0.7         | 4         | 10.0                           | 10.0                   | 3.2                        | 3.2                                  | 25                | 4.20                    | 9.62             | 15.87              |
| MKOS499<br>MKOS500                       | 0.7         | 4         | 10.0                           | 10.0<br>10.0           | 3.3<br>2.3                 | 3.3<br>2.3                           | 25<br>25          | 4.30<br>3.30            | 9.33<br>57.97    | 15.50<br>87.51     |
| MKOS501                                  | 0.2         | 4         | 10.0                           | 10.0                   | 2.0                        | 2.0                                  | 25                | 3.00                    | 66.67            | 96.26              |
| MKOS502                                  | 1.8         | 4         | 10.0                           | 10.0                   | 1.9                        | 1.9                                  | 25                | 2.90                    | 6.59             | 9.34               |
| MKOS503<br>MKOS511                       | 1.8         | 4         | 10.0                           | 10.0<br>10.0           | 3.5<br>3.2                 | 3.5<br>3.2                           | 25<br>25          | 4.50<br>4.20            | 3.58<br>3.91     | 6.02<br>6.45       |
| MKOS512                                  | 2.2         | 4         | 10.0                           | 10.0                   | 3.4                        | 3.4                                  | 25                | 4.40                    | 3.02             | 5.05               |
| MKOS513                                  | 2.7         | 4         | 10.0                           | 10.0                   | 1.9                        | 1.9                                  | 25                | 2.90                    | 4.40             | 6.23               |
| MKOS514<br>MKOS515                       | 2.5         | 4         | 10.0                           | 10.0<br>10.0           | 0.1<br>0.2                 | 0.1                                  | 25<br>25          | 1.10<br>1.20            | 91.09<br>40.10   | 17.91<br>14.46     |
| MKOS516                                  | 0.2         | 4         | 10.0                           | 10.0                   | 1.6                        | 1.6                                  | 25                | 2.60                    | 83.33            | 111.07             |
| MKOS517                                  | 0.2         | 4         | 10.0                           | 10.0                   | 2.8                        | 2.8                                  | 25                | 3.80                    | 47.62            | 75.99              |
| MKOS518<br>MKOS519                       | 1.0         | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.9<br>4.2                 | 1.9<br>4.2                           | 25<br>25          | 2.90<br>5.20            | 11.70<br>5.29    | 16.60<br>9.26      |
| MKOS520                                  | 1.0         | 4         | 10.0                           | 10.0                   | 3.9                        | 3.9                                  | 25                | 4.90                    | 6.03             | 10.40              |
| MKOS521                                  | 1.3         | 4         | 10.0                           | 10.0                   | 4.3                        | 4.3                                  | 25                | 5.30                    | 4.05             | 7.11               |
| MKOS522<br>MKOS523                       | 0.6         | 4         | 10.0                           | 10.0<br>10.0           | 1.4<br>0.5                 | 1.4<br>0.5                           | 25<br>25          | 2.40<br>1.50            | 13.61<br>76.40   | 17.19<br>55.15     |
| MKOS524                                  | 0.6         | 4         | 10.0                           | 10.0                   | 2.4                        | 2.4                                  | 25                | 3.40                    | 15.92            | 24.33              |
| MKOS525                                  | 0.6         | 4         | 10.0                           | 10.0                   | 3.1                        | 3.1                                  | 25                | 4.10                    | 12.32            | 20.18              |
| MKOS526<br>MKOS527                       | 0.9         | 4         | 10.0                           | 10.0<br>10.0           | 3.9<br>0.9                 | 3.9<br>0.9                           | 25<br>25          | 4.90<br>1.90            | 4.28<br>27.78    | 7.37<br>28.50      |
| MKOS528                                  | 0.9         | 4         | 10.0                           | 10.0                   | 1.6                        | 1.6                                  | 25                | 2.60                    | 15.63            | 20.83              |
| MKOS529                                  | 0.9         | 4         | 10.0                           | 10.0                   | 1.2                        | 1.2                                  | 25                | 2.20                    | 22.23            | 26.25              |
| MKOS530<br>MKOS531                       | 0.8<br>2.2  | 4         | 10.0                           | 10.0<br>10.0           | 1.0<br>0.3                 | 1.0<br>0.3                           | 25<br>25          | 2.00<br>1.30            | 28.58<br>35.14   | 30.94<br>17.55     |
| MKOS532                                  | 1.8         | 4         | 10.0                           | 10.0                   | 1.7                        | 1.7                                  | 25                | 2.70                    | 7.36             | 10.03              |
| MKOS533                                  | 0.6         | 4         | 10.0                           | 10.0                   | 0.1                        | 0.1                                  | 25                | 1.10                    | 382.00           | 75.21              |
| MKOS534<br>MKOS539                       | 1.3<br>2.6  | 4         | 10.0                           | 10.0<br>10.0           | 1.0<br>3.6                 | 1.0<br>3.6                           | 25<br>25          | 2.00<br>4.60            | 17.40<br>2.47    | 18.84<br>4.19      |
| MKOS540                                  | 2.2         | 4         | 10.0                           | 10.0                   | 3.5                        | 3.5                                  | 25                | 4.50                    | 2.93             | 4.94               |
| MKOS541                                  | 0.6         | 4         | 10.0                           | 10.0                   | 0.5                        | 0.5                                  | 25                | 1.50                    | 76.40            | 55.15              |
| MKOS542<br>MKOS543                       | 3.3         | 4         | 10.0                           | 10.0<br>10.0           | 2.4<br>1.1                 | 2.4<br>1.1                           | 25<br>25          | 3.40<br>2.10            | 2.88<br>6.18     | 4.40<br>7.00       |
| MKOS544                                  | 4.4         | 4         | 10.0                           | 10.0                   | 0.4                        | 0.4                                  | 25                | 1.40                    | 13.06            | 8.06               |
| MKOS563                                  | 1.3         | 4         | 10.0                           | 10.0                   | 3.8                        | 3.8                                  | 25                | 4.80                    | 4.58             | 7.85               |
| MKOS564                                  | 1.5         | 4         | 10.0                           | 10.0<br>10.0           | 4.5<br>2.6                 | 4.5<br>2.6                           | 25<br>25          | 5.50<br>3.60            | 3.42<br>4.97     | 6.06<br>7.77       |
|                                          |             |           | 10.0                           | 10.0                   | 1.5                        | 1.5                                  | 25                | 2.50                    | 22.23            | 28.88              |
| MKOS566<br>MKOS584                       | 0.7         | 4         | 10.0                           |                        |                            |                                      |                   |                         |                  |                    |
| MKOS566<br>MKOS584<br>MKOS585            | 0.9         | 4         | 10.0                           | 10.0                   | 1.8                        | 1.8                                  | 25                | 2.80                    | 14.82            | 20.63              |
| MKOS566<br>MKOS584<br>MKOS585<br>MKOS586 | 0.9<br>1.0  | 4<br>4    | 10.0<br>10.0                   | 10.0                   | 2.8                        | 2.8                                  | 25                | 3.80                    | 7.94             | 12.67              |
| MKOS566<br>MKOS584<br>MKOS585            | 0.9         | 4         | 10.0                           |                        |                            |                                      |                   |                         |                  |                    |

|                         |            |           |                                |                         |                                    |                           |                   |                                          | ained Analy        | -                   |
|-------------------------|------------|-----------|--------------------------------|-------------------------|------------------------------------|---------------------------|-------------------|------------------------------------------|--------------------|---------------------|
| Turbine<br>No./Waypoint | Slope      | Design c' | Bulk unit<br>weight of<br>Peat | Unit weight<br>of Water | 100% Water<br>to height of<br>Peat | Depth of In-<br>situ Peat | Friction<br>Angle | Equivalent Total<br>Depth of Peat<br>(m) | Factor of Safety   | for Load Condition  |
|                         | α (deg)    | c' (kPa)  | γ (kN/m³)                      | γ <sub>w</sub> (kN/m3)  | (m)                                | (m)                       | ø' (deg)          | Condition (2)                            | Condition (1)      | Condition (2)       |
| MKOS600                 | 1.5        | 4         | 10.0                           | 10.0                    | 1.8                                | 1.8                       | 25                | 2.80                                     | 100% Water<br>8.24 | 100% Water<br>11.46 |
| MKOS601                 | 1.0        | 4         | 10.0                           | 10.0                    | 2.7                                | 2.7                       | 25                | 3.70                                     | 8.72               | 13.77               |
| MKOS602<br>MKOS603      | 0.6        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.0<br>0.5                         | 1.0<br>0.5                | 25<br>25          | 2.00                                     | 38.20<br>76.40     | 41.36<br>55.15      |
| MKOS604                 | 3.0        | 4         | 10.0                           | 10.0                    | 1.0                                | 1.0                       | 25                | 1.50<br>2.00                             | 7.57               | 8.18                |
| MKOS605                 | 3.0        | 4         | 10.0                           | 10.0                    | 0.7                                | 0.7                       | 25                | 1.70                                     | 11.02              | 9.81                |
| MKOS606                 | 2.8        | 4         | 10.0                           | 10.0                    | 1.1                                | 1.1                       | 25                | 2.10                                     | 7.44               | 8.43                |
| MKOS607<br>MKOS608      | 1.3        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 2.1                                | 2.1                       | 25<br>25          | 3.10<br>3.80                             | 8.29<br>7.94       | 12.15<br>12.67      |
| MKOS611                 | 0.6        | 4         | 10.0                           | 10.0                    | 4.5                                | 2.8<br>4.5                | 25                | 5.50                                     | 7.94<br>8.49       | 15.04               |
| MKOS612                 | 0.6        | 4         | 10.0                           | 10.0                    | 4.5                                | 4.5                       | 25                | 5.50                                     | 8.49               | 15.04               |
| MKOS613                 | 1.8        | 4         | 10.0                           | 10.0                    | 4.3                                | 4.3                       | 25                | 5.30                                     | 2.91               | 5.11                |
| MKOS619                 | 3.1        | 4         | 10.0                           | 10.0                    | 1.9                                | 1.9                       | 25                | 2.90                                     | 3.91               | 5.54                |
| MKOS620<br>MKOS621      | 2.4        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.4<br>2.2                         | 1.4<br>2.2                | 25<br>25          | 2.40<br>3.20                             | 6.81<br>4.24       | 8.60<br>6.30        |
| MKOS622                 | 2.7        | 4         | 10.0                           | 10.0                    | 1.1                                | 1.1                       | 25                | 2.10                                     | 7.59               | 8.60                |
| MKOS623                 | 1.4        | 4         | 10.0                           | 10.0                    | 0.2                                | 0.2                       | 25                | 1.20                                     | 80.05              | 28.89               |
| MKOS624                 | 1.7        | 4         | 10.0                           | 10.0                    | 0.2                                | 0.2                       | 25                | 1.20                                     | 66.73              | 24.07               |
| MKOS625<br>MKOS626      | 2.8        | 4         | 10.0                           | 10.0                    | 0.6                                | peat recorded at<br>0.6   | location<br>25    | 1.60                                     | 13.64              | 11.06               |
| MKOS627                 | 2.0        | 4         | 10.0                           | 10.0                    | 2.4                                | 2.4                       | 25                | 3.40                                     | 4.77               | 7.28                |
| MKOS634                 |            |           |                                |                         |                                    | peat recorded at          |                   |                                          |                    |                     |
| MKOS635                 | 1.8        | 4         | 10.0                           | 10.0                    | 1.8                                | 1.8                       | 25                | 2.80                                     | 7.18               | 9.98                |
| MKOS636                 | 1.1        | 4         | 10.0                           | 10.0                    | 2.8                                | 2.8                       | 25                | 3.80                                     | 7.15               | 11.40               |
| MKOS637<br>MKOS638      | 1.0        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.8<br>2.7                         | 3.8<br>2.7                | 25<br>25          | 4.80<br>3.70                             | 5.85<br>5.49       | 10.03<br>8.67       |
| MKOS642                 | 1.3        | 4         | 10.0                           | 10.0                    |                                    | peat recorded at          |                   | 3.70                                     | 3.49               | 8.07                |
| MKOS643                 |            |           |                                |                         | No                                 | peat recorded at          |                   |                                          |                    |                     |
| MKOS644                 | 3.2        | 4         | 10.0                           | 10.0                    | 4.5                                | 4.5                       | 25                | 5.50                                     | 1.59               | 2.82                |
| MKOS645<br>MKOS646      | 0.1        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.2<br>0.5                         | 3.2<br>0.5                | 25<br>25          | 4.20<br>1.50                             | 62.50<br>400.00    | 103.13<br>288.77    |
| MKOS646<br>MKOS647      | 1.5        | 4         | 10.0                           | 10.0                    | 0.5<br>1.9                         | 1.9                       | 25<br>25          | 1.50<br>2.90                             | 400.00<br>7.80     | 288.77<br>11.07     |
| MKOS648                 | 1.4        | 4         | 10.0                           | 10.0                    | 3.6                                | 3.6                       | 25                | 4.60                                     | 4.63               | 7.85                |
| MKOS649                 | 1.5        | 4         | 10.0                           | 10.0                    | 4.1                                | 4.1                       | 25                | 5.10                                     | 3.62               | 6.29                |
| MKOS650                 | 1.8        | 4         | 10.0                           | 10.0                    | 4.2                                | 4.2                       | 25                | 5.20                                     | 3.08               | 5.38                |
| MKOS651<br>MKOS652      | 2.9<br>1.4 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 3.8<br>4.2                         | 3.8<br>4.2                | 25<br>25          | 4.80<br>5.20                             | 2.07<br>3.81       | 3.54<br>6.67        |
| MKOS661                 | 1.4        | 4         | 10.0                           | 10.0                    | 3.5                                | 3.5                       | 25                | 4.50                                     | 5.20               | 8.75                |
| MKOS662                 | 1.9        | 4         | 10.0                           | 10.0                    | 3.0                                | 3.0                       | 25                | 4.00                                     | 4.04               | 6.57                |
| MKOS663                 | 2.6        | 4         | 10.0                           | 10.0                    | 2.6                                | 2.6                       | 25                | 3.60                                     | 3.43               | 5.35                |
| MKOS664                 | 3.4        | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 4.18               | 5.56                |
| MKOS665<br>MKOS666      | 3.1<br>4.2 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.6<br>1.1                         | 1.6<br>1.1                | 25<br>25          | 2.60<br>2.10                             | 4.64<br>4.94       | 6.18<br>5.59        |
| MKOS667                 | 2.7        | 4         | 10.0                           | 10.0                    | 1.1                                | 1.1                       | 25                | 2.10                                     | 7.59               | 8.60                |
| MKOS668                 | 3.5        | 4         | 10.0                           | 10.0                    | 1.5                                | 1.5                       | 25                | 2.50                                     | 4.32               | 5.60                |
| MKOS669                 | 3.3        | 4         | 10.0                           | 10.0                    | 1.5                                | 1.5                       | 25                | 2.50                                     | 4.61               | 5.98                |
| MKOS670                 | 3.5        | 4         | 10.0                           | 10.0                    | 0.9                                | 0.9                       | 25                | 1.90                                     | 7.31               | 7.49                |
| MKOS671<br>MKOS672      | 3.0        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.1<br>1.7                         | 1.1<br>1.7                | 25<br>25          | 2.10<br>2.70                             | 6.88<br>4.07       | 7.79<br>5.54        |
| MKOS673                 | 2.2        | 4         | 10.0                           | 10.0                    | 2.4                                | 2.4                       | 25                | 3.40                                     | 4.39               | 6.71                |
| MKOS674                 | 4.2        | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 3.44               | 4.58                |
| MKOS675                 | 3.6        | 4         | 10.0                           | 10.0                    | 1.4                                | 1.4                       | 25                | 2.40                                     | 4.55               | 5.74                |
| MKOS687<br>MKOS688      | 3.1        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.7<br>1.2                         | 1.7<br>1.2                | 25<br>25          | 2.70<br>2.20                             | 4.29<br>6.19       | 5.84<br>7.30        |
| MKOS689                 | 2.2        | 4         | 10.0                           | 10.0                    | 2.0                                | 2.0                       | 25                | 3.00                                     | 5.27               | 7.60                |
| MKOS690                 | 3.1        | 4         | 10.0                           | 10.0                    | 1.8                                | 1.8                       | 25                | 2.80                                     | 4.05               | 5.63                |
| MKOS691                 | 2.9        | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 4.91               | 6.54                |
| MKOS692                 | 3.0        | 4         | 10.0                           | 10.0                    | 0.9                                | 0.9                       | 25                | 1.90                                     | 8.41               | 8.61                |
| MKOS693<br>MKOS694      | 2.3<br>1.2 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.3<br>1.4                         | 1.3<br>1.4                | 25<br>25          | 2.30<br>2.40                             | 7.52<br>13.61      | 9.19<br>17.19       |
| MKOS695                 | 1.3        | 4         | 10.0                           | 10.0                    | 1.0                                | 1.0                       | 25                | 2.00                                     | 18.19              | 19.69               |
| MKOS696                 | 1.4        | 4         | 10.0                           | 10.0                    | 1.4                                | 1.4                       | 25                | 2.40                                     | 11.44              | 14.44               |
| MKOS697                 | 1.4        | 4         | 10.0                           | 10.0                    | 2.7                                | 2.7                       | 25                | 3.70                                     | 5.93               | 9.37                |
| MKOS698<br>MKOS699      | 2.7<br>4.2 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 4.4<br>1.6                         | 4.4<br>1.6                | 25<br>25          | 5.40<br>2.60                             | 1.94<br>3.40       | 3.42<br>4.51        |
| MKOS700                 | 5.7        | 4         | 10.0                           | 10.0                    | 0.8                                | 0.8                       | 25                | 1.80                                     | 5.10               | 4.88                |
| MKOS701                 | 5.4        | 4         | 10.0                           | 10.0                    | 0.9                                | 0.9                       | 25                | 1.90                                     | 4.72               | 4.82                |
| MKOS702                 | 6.3        | 4         | 10.0                           | 10.0                    | 1.0                                | 1.0                       | 25                | 2.00                                     | 3.68               | 3.96                |
| MKOS703<br>MKOS704      | 2.2        | 4         | 10.0                           | 10.0                    | 1.1                                | 1.1<br>peat recorded at   | 25<br>location    | 2.10                                     | 9.58               | 10.86               |
| MKOS704<br>MKOS705      | 1.6        | 4         | 10.0                           | 10.0                    | 2.6                                | 2.6                       | 25                | 3.60                                     | 5.50               | 8.60                |
| MKOS706                 | 1.3        | 4         | 10.0                           | 10.0                    | 2.5                                | 2.5                       | 25                | 3.50                                     | 6.96               | 10.76               |
| MKOS707                 | 1.7        | 4         | 10.0                           | 10.0                    | 2.8                                | 2.8                       | 25                | 3.80                                     | 4.77               | 7.60                |
| MKOS708<br>MKOS709      | 5.7<br>7.2 | 4         | 10.0                           | 10.0                    | 0.4                                | 0.4                       | 25<br>25          | 1.40<br>1.10                             | 10.10<br>32.25     | 6.22<br>6.30        |
| MKOS709<br>MKOS726      | 8.4        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.9                                | 1.9                       | 25                | 2.90                                     | 1.46               | 2.05                |
| MKOS809                 | 0.5        | 4         | 10.0                           | 10.0                    | 4.5                                | 4.5                       | 25                | 5.50                                     | 11.11              | 19.69               |
| MKOS810                 | 3.4        | 4         | 10.0                           | 10.0                    | 4.5                                | 4.5                       | 25                | 5.50                                     | 1.49               | 2.63                |
| MKOS811                 | 3.3        | 4         | 10.0                           | 10.0                    | 3.8                                | 3.8                       | 25                | 4.80                                     | 1.82               | 3.12                |
| MKOS832<br>MKOS835      | 1.0<br>5.0 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 4.0<br>0.8                         | 4.0<br>0.8                | 25<br>25          | 5.00<br>1.80                             | 5.88<br>5.73       | 10.19<br>5.49       |
| MKOS836                 | 5.0        | 4         | 10.0                           | 10.0                    | 1.2                                | 1.2                       | 25                | 2.20                                     | 3.82               | 4.49                |
| MKOS838                 | 4.1        | 4         | 10.0                           | 10.0                    | 1.4                                | 1.4                       | 25                | 2.40                                     | 4.04               | 5.10                |
| MKOS839                 | 3.1        | 4         | 10.0                           | 10.0                    | 2.4                                | 2.4                       | 25                | 3.40                                     | 3.10               | 4.72                |
| MKOS845                 |            |           |                                |                         |                                    | peat recorded at          |                   | 1                                        |                    |                     |
| MKOS846<br>MKOS847      | 3.0        | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 0.9<br>1.4                         | 0.9<br>1.4                | 25<br>25          | 1.90<br>2.40                             | 11.41<br>5.51      | 11.70<br>6.95       |
| MKOS848                 | 2.9        | 4         | 10.0                           | 10.0                    | 1.4                                | 1.4                       | 25                | 2.40                                     | 4.63               | 6.30                |
| MKOS849                 | 2.8        | 4         | 10.0                           | 10.0                    | 1.7                                | 1.7                       | 25                | 2.70                                     | 4.81               | 6.56                |
| MKOS850                 | 2.9        | 4         | 10.0                           | 10.0                    | 1.7                                | 1.7                       | 25                | 2.70                                     | 4.72               | 6.42                |
| MKOS851                 | 3.0        | 4         | 10.0                           | 10.0                    | 1.6                                | 1.6                       | 25                | 2.60                                     | 4.73               | 6.29                |
| T9<br>T10               | 3.8<br>2.3 | 4         | 10.0<br>10.0                   | 10.0<br>10.0            | 1.4<br>2.2                         | 1.4<br>2.2                | 25<br>25          | 2.40<br>3.20                             | 4.35<br>4.55       | 5.48<br>6.77        |
| 110                     | 2.3        | 4         | 10.0                           | 10.0                    | 4.6                                | 4.6                       | 25                | 3.20<br>5.60                             | 4.55               | 7.74                |

| Turbine          | Slope        | Design c' | Bulk unit         | Unit weight            | 100% Water           | Depth of In-           | Friction         | Equivalent Total     | rained Analy        | for Load Conditio  |
|------------------|--------------|-----------|-------------------|------------------------|----------------------|------------------------|------------------|----------------------|---------------------|--------------------|
| No./Waypoint     | Siope        | Design c  | weight of<br>Peat | of Water               | to height of<br>Peat | situ Peat              | Angle            | Depth of Peat<br>(m) | Factor of Safety    | for Load Conditio  |
|                  | α (deg)      | c' (kPa)  | γ (kN/m³)         | γ <sub>w</sub> (kN/m3) | (m)                  | (m)                    | ø' (deg)         | Condition (2)        | Condition (1)       | Condition (2       |
| WP 001           | 3.1          | 4         | 10.0              | 10.0                   | 0.7                  | 0.7                    | 25               | 1.70                 | 100% Water<br>10.61 | 100% Water<br>9.45 |
| WP 002           | 2.5          | 4         | 10.0              | 10.0                   | 1.5                  | 1.5                    | 25               | 2.50                 | 6.21                | 8.07               |
| WP 004           | 4.9          | 4         | 10.0              | 10.0                   | 0.6                  | 0.6                    | 25               | 1.60                 | 7.90                | 6.39               |
| WP 005<br>WP 006 | 3.7<br>2.4   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.7<br>1.9           | 0.7<br>1.9             | 25<br>25         | 1.70<br>2.90         | 8.83<br>5.02        | 7.86<br>7.12       |
| WP 007           | 2.6          | 4         | 10.0              | 10.0                   | 2.1                  | 2.1                    | 25               | 3.10                 | 4.24                | 6.22               |
| WP 008           | 2.3          | 4         | 10.0              | 10.0                   | 2.3                  | 2.3                    | 25               | 3.30                 | 4.25                | 6.41               |
| WP 009<br>WP 010 | 2.5<br>0.9   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 1.9<br>4.1           | 1.9<br>4.1             | 25<br>25         | 2.90<br>5.10         | 4.91<br>6.51        | 6.95<br>11.33      |
| WP 011           | 0.9          | 4         | 10.0              | 10.0                   | 3.6                  | 3.6                    | 25               | 4.60                 | 6.95                | 11.77              |
| WP 012           | 0.6          | 4         | 10.0              | 10.0                   | 0.6                  | 0.6                    | 25               | 1.60                 | 63.67               | 51.70              |
| WP 013<br>WP 014 | 1.3<br>0.8   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.9<br>2.2           | 0.9<br>2.2             | 25<br>25         | 1.90<br>3.20         | 20.21<br>12.99      | 20.73<br>19.34     |
| WP 018           | 1.3          | 4         | 10.0              | 10.0                   | 1.4                  | 1.4                    | 25               | 2.40                 | 12.99               | 16.41              |
| WP 019           | 8.6          | 4         | 10.0              | 10.0                   | 0.3                  | 0.3                    | 25               | 1.30                 | 8.97                | 4.43               |
| WP 020<br>WP 021 | 5.8<br>2.9   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 1.2<br>0.4           | 1.2<br>0.4             | 25<br>25         | 2.20<br>1.40         | 3.30<br>19.66       | 3.88<br>12.15      |
| WP 022           | 3.1          | 4         | 10.0              | 10.0                   | 0.5                  | 0.5                    | 25               | 1.50                 | 14.59               | 10.52              |
| WP 024           | 5.5          | 4         | 10.0              | 10.0                   | 4.0                  | 4.0                    | 25               | 5.00                 | 1.05                | 1.81               |
| WP 025<br>WP 026 | 3.0<br>1.8   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 7.2<br>5.2           | 7.2<br>5.2             | 25<br>25         | 8.20<br>6.20         | 1.06<br>2.41        | 2.02<br>4.37       |
| WP 027           | 1.3          | 4         | 10.0              | 10.0                   | 3.4                  | 3.4                    | 25               | 4.40                 | 5.12                | 8.56               |
| WP 028           | 1.1          | 4         | 10.0              | 10.0                   | 2.3                  | 2.3                    | 25               | 3.30                 | 8.70                | 13.13              |
| WP 029<br>WP 030 | 2.4<br>6.4   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 1.5<br>0.2           | 1.5<br>0.2             | 25<br>25         | 2.50<br>1.20         | 6.36<br>18.08       | 8.26<br>6.48       |
| WP 030           | 7.6          | 4         | 10.0              | 10.0                   | 0.2                  | 0.2                    | 25               | 1.60                 | 5.06                | 4.07               |
| WP 032           | 4.2          | 4         | 10.0              | 10.0                   | 5.2                  | 5.2                    | 25               | 6.20                 | 1.05                | 1.89               |
| WP 034<br>WP 035 | 0.7<br>1.7   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 4.1<br>4.0           | 4.1<br>4.0             | 25<br>25         | 5.10<br>5.00         | 7.51<br>3.45        | 13.07<br>5.98      |
| WP 035           | 0.9          | 4         | 10.0              | 10.0                   | 3.0                  | 3.0                    | 25               | 4.00                 | 8.89                | 14.44              |
| WP 039           | 1.1          | 4         | 10.0              | 10.0                   | 4.5                  | 4.5                    | 25               | 5.50                 | 4.68                | 8.29               |
| WP 040<br>WP 043 | 1.4<br>1.5   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 4.0<br>1.6           | 4.0<br>1.6             | 25<br>25         | 5.00<br>2.60         | 4.17<br>9.27        | 7.22<br>12.34      |
| WP 050           | 1.3          | 4         | 10.0              | 10.0                   | 1.8                  | 1.8                    | 25               | 2.80                 | 10.11               | 14.07              |
| WP 051           | 3.5          | 4         | 10.0              | 10.0                   | 0.7                  | 0.7                    | 25               | 1.70                 | 9.25                | 8.23               |
| WP 052<br>S 24   | 3.4<br>0.9   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 2.7<br>3.4           | 2.7<br>3.4             | 25<br>25         | 3.70<br>4.40         | 2.52<br>7.35        | 3.97<br>12.31      |
| S2_4A            | 0.9          | 4         | 10.0              | 10.0                   | 3.8                  | 3.8                    | 25               | 4.80                 | 7.02                | 12.03              |
| P22              | 1.5          | 4         | 10.0              | 10.0                   | 2.5                  | 2.5                    | 25               | 3.50                 | 6.16                | 9.52               |
| P 13<br>P1 3A    | 2.2          | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.7<br>0.9           | 0.7                    | 25<br>25         | 1.70<br>1.90         | 15.06<br>10.12      | 13.42<br>10.37     |
| WP 013A          | 1.9          | 4         | 10.0              | 10.0                   | 0.8                  | 0.8                    | 25               | 1.80                 | 14.72               | 14.16              |
| WP 014A          | 3.7          | 4         | 10.0              | 10.0                   | 0.6                  | 0.6                    | 25               | 1.60                 | 10.30               | 8.35               |
| WP 032A<br>R 48  | 8.9<br>0.5   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.5<br>4.7           | 0.5<br>4.7             | 25<br>25         | 1.50<br>5.70         | 5.25<br>9.46        | 3.74<br>16.89      |
| WP 052A          | 2.9          | 4         | 10.0              | 10.0                   | 1.8                  | 1.8                    | 25               | 2.80                 | 4.46                | 6.20               |
| T6               | 5.2          | 4         | 10.0              | 10.0                   | 2.1                  | 2.1                    | 25               | 3.10                 | 2.11                | 3.08               |
| T27              | 13.4         | 4         | 10.0              | 10.0                   | 1.0                  | 1.0                    | 25               | 2.00                 | 1.78                | 1.87               |
| T28<br>T29       | 1.0<br>0.6   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 4.0<br>0.7           | 4.0<br>0.7             | 25<br>25         | 5.00<br>1.70         | 5.56<br>54.57       | 9.63<br>48.66      |
| 31               | 3.2          | 4         | 10.0              | 10.0                   | 3.5                  | 3.5                    | 25               | 4.50                 | 2.05                | 3.44               |
| 32<br>33         | 0.1          | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 2.5<br>2.2           | 2.5<br>2.2             | 25<br>25         | 3.50<br>3.20         | 80.00<br>90.91      | 123.76<br>135.36   |
| 34               | 1.5          | 4         | 10.0              | 10.0                   | 2.2                  | 2.0                    | 25               | 3.00                 | 7.41                | 10.70              |
| 35               | 1.5          | 4         | 10.0              | 10.0                   | 3.3                  | 3.3                    | 25               | 4.30                 | 4.49                | 7.46               |
| 37<br>38         | 2.7<br>3.8   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.6<br>0.2           | 0.6<br>0.2             | 25<br>25         | 1.60<br>1.20         | 13.92<br>29.98      | 11.29<br>10.80     |
| 39               | 3.8          | 4         | 10.0              | 10.0                   | 1.2                  | 1.2                    | 25               | 2.20                 | 5.58                | 6.57               |
| 40               | 4.5          | 4         | 10.0              | 10.0                   | 0.3                  | 0.3                    | 25               | 1.30                 | 16.98               | 8.46               |
| 41<br>42         | 2.1<br>0.1   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.4                  | 0.4                    | 25<br>25         | 1.40<br>1.10         | 27.81<br>2000.01    | 17.20<br>393.78    |
| 43               | 1.7          | 4         | 10.0              | 10.0                   | 0.1                  | 0.1                    | 25               | 1.60                 | 22.24               | 18.06              |
| 44               | 2.7          | 4         | 10.0              | 10.0                   | 0.2                  | 0.2                    | 25               | 1.15                 | 56.86               | 16.04              |
| 45<br>46         | 1.8<br>2.7   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.5<br>0.5           | 0.5<br>0.5             | 25<br>25         | 1.45<br>1.45         | 28.70<br>18.56      | 19.28<br>12.46     |
| 47               | 3.8          | 4         | 10.0              | 10.0                   | 1.2                  | 1.2                    | 25               | 2.20                 | 5.00                | 5.89               |
| 48               | 2.6          | 4         | 10.0              | 10.0                   | 1.0                  | 1.0                    | 25               | 2.00                 | 8.71                | 9.43               |
| 49<br>55         | 1.9<br>10.1  | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.2<br>0.7           | 0.2<br>0.7             | 25<br>25         | 1.15<br>1.70         | 78.52<br>3.29       | 22.17<br>2.89      |
| 56               | 12.0         | 4         | 10.0              | 10.0                   | 0.1                  | 0.1                    | 25               | 1.10                 | 19.63               | 3.77               |
| 57               | 13.1         | 4         | 10.0              | 10.0                   | 0.2                  | 0.2                    | 25               | 1.20                 | 9.05                | 3.18               |
| 58<br>59         | 11.3<br>10.9 | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.9<br>1.0           | 0.9<br>1.0             | 25<br>25         | 1.85<br>2.00         | 2.46<br>2.16        | 2.40<br>2.29       |
| 60               | 11.9         | 4         | 10.0              | 10.0                   | 0.4                  | 0.4                    | 25               | 1.40                 | 4.97                | 3.01               |
| 61               | 15.3         | 4         | 10.0              | 10.0                   | 0.2                  | 0.2                    | 25               | 1.20                 | 7.87                | 2.74               |
| 62<br>PB1        | 17.2<br>1.8  | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.3<br>1.4           | 0.3<br>1.4             | 25<br>25         | 1.30<br>2.40         | 4.73<br>8.94        | 2.25<br>11.29      |
| PB4              | 4.1          | 4         | 10.0              | 10.0                   | 1.7                  | 1.7                    | 25               | 2.70                 | 3.28                | 4.47               |
| WP004            | 2.0          | 4         | 10.0              | 10.0                   | 1.8                  | 1.8                    | 25               | 2.80                 | 6.36                | 8.84               |
| B1<br>1          | 0.6<br>3.0   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 1.7<br>0.1           | 1.7<br>0.1             | 25<br>25         | 2.70<br>1.10         | 22.47<br>75.68      | 30.64<br>14.88     |
| 2                | 2.9          | 4         | 10.0              | 10.0                   | 0.1                  | 0.1                    | 25               | 1.10                 | 78.64               | 14.88              |
| 3                | 9.3          | 4         | 10.0              | 10.0                   | 0.1                  | 0.1                    | 25               | 1.10                 | 25.19               | 4.89               |
| 5                | 11.3         | 4         | 10.0              | 10.0                   | 0.2<br>No            | 0.2<br>peat recorded a | 25<br>t location | 1.15                 | 13.93               | 3.85               |
| 6                |              |           |                   |                        |                      | peat recorded a        |                  |                      |                     |                    |
| 7                |              |           |                   |                        | No                   | peat recorded a        | t location       |                      |                     |                    |
| 9                | 10.5         | 4         | 10.0              | 10.0                   | 0.1                  | peat recorded a<br>0.1 | t location<br>25 | 1.05                 | 44.72               | 4.53               |
| 19               | 9.5          | 4         | 10.0              | 10.0                   | 0.1                  | 0.1                    | 25               | 1.05                 | 22.38               | 4.53               |
| 20               | 9.7          | 4         | 10.0              | 10.0                   | 0.1                  | 0.1                    | 25               | 1.11                 | 21.89               | 4.63               |
| 21               | 9.5<br>0.6   | 4         | 10.0<br>10.0      | 10.0<br>10.0           | 0.3<br>0.2           | 0.3                    | 25<br>25         | 1.25<br>1.15         | 9.85<br>254.67      | 4.20<br>71.94      |
| 23               | 7.7          | 4         | 10.0              | 10.0                   | 0.2                  | 0.2                    | 25               | 1.15                 | 254.67<br>15.08     | 71.94<br>5.39      |
| 24               | 7.5          | 4         | 10.0              | 10.0                   | 0.2                  | 0.2                    | 25               | 1.20                 | 15.42               | 5.51               |

| Calculated FoS of Natural Peat Slopes for Ardderroo Wind Farm (Drained Analysis) |              |           |                                |                        |                                    |                           |                   |                                    |                     |                    |
|----------------------------------------------------------------------------------|--------------|-----------|--------------------------------|------------------------|------------------------------------|---------------------------|-------------------|------------------------------------|---------------------|--------------------|
| Turbine<br>No./Waypoint                                                          | Slope        | Design c' | Bulk unit<br>weight of<br>Peat | Unit weight of Water   | 100% Water<br>to height of<br>Peat | Depth of In-<br>situ Peat | Friction<br>Angle | Equivalent Total Depth of Peat (m) | Factor of Safety    | for Load Condition |
|                                                                                  | α (deg)      | c' (kPa)  | γ (kN/m³)                      | γ <sub>w</sub> (kN/m3) | (m)                                | (m)                       | ø' (deg)          | Condition (2)                      | Condition (1)       | Condition (2)      |
| 25                                                                               | 8.1          | 4         | 10.0                           | 10.0                   | 0.3                                | 0.3                       | 25                | 1.25                               | 100% Water<br>11.42 | 100% Water<br>4.89 |
| 26                                                                               | 7.7          | 4         | 10.0                           | 10.0                   | 0.7                                | 0.7                       | 25                | 1.70                               | 4.28                | 3.78               |
| 27                                                                               | 8.6          | 4         | 10.0                           | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 5.42                | 3.87               |
| 28<br>29                                                                         | 8.2<br>4.4   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.3<br>0.9                         | 0.3                       | 25<br>25          | 1.30<br>1.90                       | 9.45<br>5.81        | 4.67<br>5.94       |
| 30                                                                               | 7.1          | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 16.38               | 5.86               |
| 31                                                                               | 8.8          | 4         | 10.0                           | 10.0                   | 0.3                                | 0.3                       | 25                | 1.30                               | 8.81                | 4.35               |
| 7B<br>9B                                                                         | 9.3          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.9<br>0.4                         | 0.9                       | 25<br>25          | 1.90<br>1.40                       | 2.80<br>13.96       | 2.83<br>8.61       |
| 10B                                                                              | 4.1          | 4         | 10.0                           | 10.0                   | 1.2                                | 1.2                       | 25                | 2.20                               | 4.65                | 5.48               |
| 11B                                                                              | 0.2          | 4         | 10.0                           | 10.0                   | 1.2                                | 1.2                       | 25                | 2.20                               | 83.33               | 98.44              |
| 12B<br>13B                                                                       | 11.3<br>8.6  | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.4<br>0.1                         | 0.4                       | 25<br>25          | 1.40<br>1.10                       | 5.22<br>26.92       | 3.17<br>5.24       |
| 14B                                                                              | 8.3          | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 2.80                | 3.00               |
| 16B                                                                              | 9.8<br>7.0   | 4         | 10.0                           | 10.0<br>10.0           | 0.6                                | 0.6                       | 25<br>25          | 1.60                               | 3.99                | 3.19               |
| 24B<br>26B                                                                       | 11.2         | 4         | 10.0<br>10.0                   | 10.0                   | 0.3<br>0.2                         | 0.3                       | 25                | 1.30<br>1.20                       | 11.09<br>10.50      | 5.50<br>3.71       |
| 28B                                                                              | 13.7         | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 1.74                | 1.82               |
| 30B<br>47B                                                                       | 12.5<br>12.0 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>0.1                         | 1.0<br>0.1                | 25<br>25          | 2.00<br>1.10                       | 1.89<br>19.63       | 2.00<br>3.77       |
| 49B                                                                              | 9.3          | 4         | 10.0                           | 10.0                   | 0.1                                | 0.1                       | 25                | 1.20                               | 12.52               | 4.46               |
| 50B                                                                              | 8.1          | 4         | 10.0                           | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 1.69                | 2.28               |
| 52B<br>60B                                                                       | 8.1<br>2.9   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.9                                | 0.9                       | 25<br>25          | 1.90<br>1.30                       | 3.17<br>26.73       | 3.22<br>13.34      |
| 60B<br>61B                                                                       | 0.2          | 4         | 10.0                           | 10.0                   | 2.5                                | 2.5                       | 25                | 1.30<br>3.50                       | 26.73<br>40.00      | 13.34<br>61.88     |
| 62B                                                                              | 3.0          | 4         | 10.0                           | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 8.57                | 8.78               |
| 72B<br>WP001B                                                                    | 2.3<br>12.5  | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>0.1                         | 1.0<br>0.1                | 25<br>25          | 2.00<br>1.10                       | 10.02<br>18.91      | 10.84<br>3.63      |
| WP001B<br>WP006B                                                                 | 12.5         | 4         | 10.0                           | 10.0                   | 3.8                                | 3.8                       | 25                | 1.10<br>4.80                       | 18.91<br>4.39       | 3.63<br>7.52       |
| WP008B                                                                           | 3.8          | 4         | 10.0                           | 10.0                   | 1.5                                | 1.5                       | 25                | 2.50                               | 4.06                | 5.26               |
| WP001<br>WP002                                                                   | 3.3<br>4.3   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.6<br>0.7                         | 1.6<br>0.7                | 25<br>25          | 2.60<br>1.70                       | 4.32<br>7.56        | 5.75<br>6.72       |
| WP002<br>WP003                                                                   | 3.3          | 4         | 10.0                           | 10.0                   | 0.7                                | 0.7                       | 25                | 1.70                               | 11.73               | 9.51               |
| WP004                                                                            | 2.8          | 4         | 10.0                           | 10.0                   | 1.2                                | 1.2                       | 25                | 2.20                               | 6.82                | 8.05               |
| WP005<br>WP006                                                                   | 2.0<br>1.7   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.8<br>1.4                         | 2.8<br>1.4                | 25<br>25          | 3.80<br>2.40                       | 4.09<br>9.86        | 6.52<br>12.45      |
| WP006<br>WP007                                                                   | 3.3          | 4         | 10.0                           | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 7.82                | 8.01               |
| B13                                                                              | 3.2          | 4         | 10.0                           | 10.0                   | 1.6                                | 1.6                       | 25                | 2.60                               | 4.48                | 5.96               |
| B14<br>B15                                                                       | 2.2<br>1.4   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.5<br>2.3                         | 2.5                       | 25<br>25          | 3.50<br>3.30                       | 4.22<br>6.96        | 6.52<br>10.50      |
| B15<br>B18                                                                       | 1.4          | 4         | 10.0                           | 10.0                   | 2.3                                | 2.3                       | 25                | 3.40                               | 5.75                | 8.79               |
| B21                                                                              | 3.3          | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 8.80                | 8.46               |
| B22<br>B23                                                                       | 3.2<br>1.8   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.7<br>0.7                         | 0.7                       | 25<br>25          | 1.70<br>1.70                       | 10.24<br>18.45      | 9.11<br>16.45      |
| B28                                                                              | 2.9          | 4         | 10.0                           | 10.0                   | 2.3                                | 2.3                       | 25                | 3.30                               | 3.42                | 5.15               |
| B29                                                                              | 3.3          | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 8.65                | 8.31               |
| R1<br>R10                                                                        | 0.2<br>2.6   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.6<br>1.4                         | 2.6<br>1.4                | 25<br>25          | 3.60<br>2.40                       | 38.46<br>6.36       | 60.16<br>8.03      |
| R2                                                                               | 0.6          | 4         | 10.0                           | 10.0                   | 3.1                                | 3.1                       | 25                | 4.10                               | 12.32               | 20.18              |
| R3                                                                               | 1.1          | 4         | 10.0                           | 10.0                   | 2.6                                | 2.6                       | 25                | 3.60                               | 7.70                | 12.03              |
| R7<br>R8                                                                         | 2.5          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 3.8<br>0.9                         | 3.8<br>0.9                | 25<br>25          | 4.80<br>1.90                       | 2.45<br>9.68        | 4.20<br>9.92       |
| R9                                                                               | 0.1          | 4         | 10.0                           | 10.0                   | 0.6                                | 0.9                       | 25                | 1.60                               | 666.67              | 541.44             |
| SUB5                                                                             | 7.6          | 4         | 10.0                           | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 6.08                | 4.35               |
| MKOSA-1<br>MKOSA-2                                                               | 2.0          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.1                                | 2.1                       | 25<br>25          | 3.10<br>3.20                       | 5.45<br>5.20        | 7.99<br>7.74       |
| MKOSA-3                                                                          | 1.8          | 4         | 10.0                           | 10.0                   | 2.2                                | 2.2                       | 25                | 3.00                               | 6.46                | 9.32               |
| MKOSA-4                                                                          | 2.5          | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 9.11                | 9.85               |
| MKOSA-5<br>MKOSA-6                                                               | 2.2          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>1.1                         | 1.0                       | 25<br>25          | 2.00<br>2.10                       | 10.54<br>8.10       | 11.41<br>9.18      |
| MKOSA-6<br>MKOSA-7                                                               | 2.6          | 4         | 10.0                           | 10.0                   | 1.1                                | 1.1                       | 25                | 2.10                               | 8.02                | 8.67               |
| MKOSA-8                                                                          | 3.0          | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 9.64                | 9.27               |
| MKOSA-9<br>MKOSA-10                                                              | 3.8          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.2<br>0.4                         | 1.2<br>0.4                | 25<br>25          | 2.20<br>1.40                       | 5.00<br>15.22       | 5.89<br>9.39       |
| MKOSA-10                                                                         | 0.6          | 4         | 10.0                           | 10.0                   | 1.2                                | 1.2                       | 25                | 2.20                               | 31.83               | 37.60              |
| MKOSA-12                                                                         | 2.2          | 4         | 10.0                           | 10.0                   | 0.4                                | 0.4                       | 25                | 1.40                               | 25.68               | 15.88              |
| MKOSA-13<br>MKOSA-14                                                             | 0.1          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 3.6<br>4.0                         | 3.6<br>4.0                | 25<br>25          | 4.60<br>5.00                       | 55.56<br>33.33      | 94.16<br>57.75     |
| MKOSA-14                                                                         | 2.2          | 4         | 10.0                           | 10.0                   | 2.4                                | 2.4                       | 25                | 3.40                               | 4.28                | 6.54               |
| MKOSA-16                                                                         | 2.2          | 4         | 10.0                           | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 21.08               | 15.21              |
| MKOSA-17<br>MKOSA-18                                                             | 2.5          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.5<br>1.2                         | 0.5<br>1.2                | 25<br>25          | 1.50<br>2.20                       | 18.22<br>7.77       | 13.14<br>9.17      |
| MKOSA-18                                                                         | 0.6          | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 38.20               | 41.36              |
| MKOSA-20                                                                         | 1.3          | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 18.19               | 19.69              |
| MKOSA-30<br>MKOSA-31                                                             | 3.7          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>1.0                         | 1.0                       | 25<br>25          | 2.00<br>2.00                       | 6.18<br>7.17        | 6.68<br>7.75       |
| MKOSA-31                                                                         | 3.4          | 4         | 10.0                           | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 6.80                | 7.75               |
| MKOSA-33                                                                         | 2.9          | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 40.10               | 14.46              |
| MKOSA-34<br>MKOSA-35                                                             | 2.5          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.1<br>1.9                         | 0.1<br>1.9                | 25<br>25          | 1.10<br>2.90                       | 91.09<br>4.40       | 17.91<br>6.23      |
| MKOSA-35                                                                         | 2.7          | 4         | 10.0                           | 10.0                   | 3.4                                | 3.4                       | 25                | 4.40                               | 3.02                | 5.05               |
| MKOSA-39                                                                         | 1.9          | 4         | 10.0                           | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 6.07                | 8.75               |
| MKOSA-40                                                                         | 0.9          | 4         | 10.0<br>10.0                   | 10.0                   | 4.0<br>3.5                         | 4.0                       | 25<br>25          | 5.00<br>4.50                       | 6.25<br>9.53        | 10.83<br>16.04     |
| MKOSA-41<br>MKOSA-42                                                             | 0.7<br>1.7   | 4         | 10.0                           | 10.0<br>10.0           | 3.5<br>3.2                         | 3.5<br>3.2                | 25<br>25          | 4.50<br>4.20                       | 9.53<br>4.17        | 16.04<br>6.88      |
| MKOSA-43                                                                         | 1.8          | 4         | 10.0                           | 10.0                   | 3.5                                | 3.5                       | 25                | 4.50                               | 3.69                | 6.21               |
| MKOSA-44                                                                         | 1.9          | 4         | 10.0                           | 10.0                   | 3.5                                | 3.5                       | 25                | 4.50                               | 3.37                | 5.67               |
| MKOSA-45<br>MKOSA-46                                                             | 1.9<br>2.2   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.5<br>2.6                         | 2.5                       | 25<br>25          | 3.50<br>3.60                       | 4.85<br>3.95        | 7.50<br>6.17       |
| MKOSA-47                                                                         | 2.3          | 4         | 10.0                           | 10.0                   | 3.2                                | 3.2                       | 25                | 4.20                               | 3.05                | 5.03               |
| MKOSA-48                                                                         | 2.3          | 4         | 10.0                           | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 5.89                | 8.03               |
| MKOSA-49                                                                         | 2.6          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>1.7                         | 1.0<br>1.7                | 25<br>25          | 2.00<br>2.70                       | 8.91<br>5.24        | 9.63<br>7.14       |
| MKOSA-50                                                                         | 2.6          | 4         |                                |                        |                                    |                           |                   |                                    |                     |                    |

|                         | alcula       | ted FoS   | of Natur                       | al Peat S              | lopes for                          | Ardderr                   | oo Wir            | nd Farm (Di                        | ained Analy      | /sis)              |
|-------------------------|--------------|-----------|--------------------------------|------------------------|------------------------------------|---------------------------|-------------------|------------------------------------|------------------|--------------------|
| Turbine<br>No./Waypoint | Slope        | Design c' | Bulk unit<br>weight of<br>Peat | Unit weight of Water   | 100% Water<br>to height of<br>Peat | Depth of In-<br>situ Peat | Friction<br>Angle | Equivalent Total Depth of Peat (m) | Factor of Safety | for Load Condition |
|                         | α (deg)      | c' (kPa)  | γ (kN/m³)                      | γ <sub>w</sub> (kN/m3) | (m)                                | (m)                       | ø' (deg)          | Condition (2)                      | Condition (1)    | Condition (2)      |
| MKOSA-52                | 1.8          | 4         | 10.0                           | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 7.36             | 10.03 Water        |
| MKOSA-53                | 1.4          | 4         | 10.0                           | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 32.02            | 23.11              |
| MKOSA-54<br>MKOSA-55    | 1.3<br>1.1   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.9<br>1.1                         | 0.9<br>1.1                | 25<br>25          | 1.90<br>2.10                       | 19.33<br>18.19   | 19.83<br>20.63     |
| MKOSA-56                | 0.1          | 4         | 10.0                           | 10.0                   | 1.8                                | 1.8                       | 25                | 2.80                               | 222.22           | 309.40             |
| MKOSA-57<br>MKOSA-58    | 0.1          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.8<br>1.8                         | 1.8                       | 25<br>25          | 2.80<br>2.80                       | 111.11<br>111.11 | 154.70<br>154.70   |
| MKOSA-85                | 7.1          | 4         | 10.0                           | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 1.64             | 2.35               |
| MKOSA-86<br>MKOSA-88    | 2.6          | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.4                                | 2.4                       | 25<br>25          | 3.40<br>3.80                       | 3.71<br>3.58     | 5.67<br>5.70       |
| MKOSA-89                | 2.0          | 4         | 10.0                           | 10.0                   | 1.8                                | 1.8                       | 25                | 2.80                               | 6.36             | 8.84               |
| MKOSA-91<br>MKOSA-92    | 2.3<br>0.8   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>3.5                         | 1.0<br>3.5                | 25<br>25          | 2.00<br>4.50                       | 10.02<br>8.16    | 10.84<br>13.75     |
| MKOSA-93<br>MKOSA-99    | 0.8          | 4         | 10.0                           | 10.0                   | 3.8                                | 3.8<br>peat recorded a    | 25                | 4.80                               | 7.52             | 12.89              |
| 1                       | 3.5          | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 8.10             | 7.78               |
| 3                       | 2.7<br>8.3   | 4         | 10.0                           | 10.0<br>10.0           | 1.0<br>0.7                         | 1.0<br>0.7                | 25<br>25          | 2.00<br>1.70                       | 8.35<br>4.02     | 9.03<br>3.55       |
| 4                       | 8.6          | 4         | 10.0                           | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 1.35             | 1.93               |
| 5<br>6                  | 12.0<br>13.7 | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.2<br>0.4                         | 0.2                       | 25<br>25          | 1.20<br>1.40                       | 9.82<br>4.34     | 3.46<br>2.61       |
| 7                       | 12.5         | 4         | 10.0                           | 10.0                   | 0.4                                | 0.3                       | 25                | 1.30                               | 6.30             | 3.07               |
| 8<br>9                  | 11.6         | 4         | 10.0<br>10.0                   | 10.0                   | 0.9<br>1.0                         | 0.9<br>1.0                | 25<br>25          | 1.90                               | 2.26<br>2.14     | 2.27<br>2.27       |
| 10                      | 11.0<br>3.5  | 4         | 10.0                           | 10.0<br>10.0           | 0.1                                | 0.1                       | 25<br>25          | 2.00<br>1.10                       | 2.14<br>65.82    | 2.27<br>12.93      |
| 11                      | 6.0          | 4         | 10.0                           | 10.0                   | 3.5                                | 3.5                       | 25                | 4.50                               | 1.10             | 1.84               |
| 12<br>13                | 7.0<br>4.5   | 4         | 10.0                           | 10.0<br>10.0           | 2.1<br>0.6                         | 0.6                       | 25<br>25          | 3.10<br>1.60                       | 1.58<br>8.60     | 2.31<br>6.96       |
| 14                      | 4.7          | 4         | 10.0                           | 10.0                   | 2.1                                | 2.1                       | 25                | 3.10                               | 2.34             | 3.42               |
| 15<br>16                | 11.7<br>6.4  | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.7<br>0.4                         | 0.7                       | 25<br>25          | 1.70<br>1.40                       | 2.88<br>9.04     | 2.51<br>5.56       |
| 17                      | 7.0          | 4         | 10.0                           | 10.0                   | 0.4                                | 0.4                       | 25                | 1.40                               | 8.25             | 5.07               |
| 18<br>21                | 3.6<br>3.7   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.3<br>1.2                         | 0.3<br>1.2                | 25<br>25          | 1.30<br>2.20                       | 21.25<br>5.15    | 10.60<br>6.07      |
| 22                      | 3.7          | 4         | 10.0                           | 10.0                   | 1.1                                | 1.1                       | 25                | 2.20                               | 6.51             | 7.38               |
| 27                      | 1.8          | 4         | 10.0                           | 10.0                   | 2.4                                | 2.4                       | 25                | 3.40                               | 5.21             | 7.97               |
| 28<br>68                | 1.2<br>2.2   | 4         | 10.0                           | 10.0<br>10.0           | 2.6<br>4.0                         | 2.6<br>4.0                | 25<br>25          | 3.60<br>5.00                       | 7.33<br>2.57     | 11.46<br>4.45      |
| 69                      | 3.8          | 4         | 10.0                           | 10.0                   | 0.7                                | 0.7                       | 25                | 1.70                               | 8.70             | 7.74               |
| 70<br>71                | 5.9<br>7.1   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.7<br>0.4                         | 0.7                       | 25<br>25          | 1.70<br>1.40                       | 5.61<br>8.19     | 4.97<br>5.03       |
| 72                      | 5.7          | 4         | 10.0                           | 10.0                   | 0.6                                | 0.6                       | 25                | 1.60                               | 6.73             | 5.44               |
| 74<br>77                | 6.6<br>0.4   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.7<br>0.3                         | 0.7                       | 25<br>25          | 1.70<br>1.30                       | 5.03<br>190.49   | 4.46<br>95.20      |
| 78                      | 0.2          | 4         | 10.0                           | 10.0                   | 0.3                                | 0.3                       | 25                | 1.30                               | 444.45           | 222.13             |
| 79<br>80                | 2.2<br>1.3   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.7<br>3.0                         | 1.7<br>3.0                | 25<br>25          | 2.70<br>4.00                       | 6.20<br>5.80     | 8.45<br>9.42       |
| 81                      | 0.7          | 4         | 10.0                           | 10.0                   | 3.4                                | 3.4                       | 25                | 4.40                               | 9.05             | 15.15              |
| 82                      | 1.8          | 4         | 10.0                           | 10.0                   | 4.7                                | 4.7                       | 25                | 5.70                               | 2.66             | 4.75               |
| 84<br>85                | 1.6<br>1.6   | 4         | 10.0                           | 10.0<br>10.0           | 2.5<br>0.9                         | 0.9                       | 25<br>25          | 3.50<br>1.90                       | 5.72<br>15.89    | 8.84<br>16.29      |
| 86                      | 3.5          | 4         | 10.0                           | 10.0                   | 0.7                                | 0.7                       | 25                | 1.70                               | 9.25             | 8.23               |
| 87<br>88                | 3.6<br>2.6   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.0<br>1.1                         | 1.0                       | 25<br>25          | 2.00<br>2.10                       | 6.37<br>7.92     | 6.89<br>8.98       |
| 89                      | 0.6          | 4         | 10.0                           | 10.0                   | 1.9                                | 1.9                       | 25                | 2.90                               | 19.14            | 27.16              |
| 90<br>91                | 1.1<br>3.0   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 2.7<br>2.6                         | 2.7                       | 25<br>25          | 3.70<br>3.60                       | 7.80<br>2.97     | 12.33<br>4.63      |
| 92                      | 3.7          | 4         | 10.0                           | 10.0                   | 0.7                                | 0.7                       | 25                | 1.70                               | 8.97             | 7.98               |
| 93<br>94                | 0.1<br>2.1   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.7<br>2.7                         | 0.7<br>2.7                | 25<br>25          | 1.70<br>3.70                       | 285.72<br>4.01   | 254.80<br>6.33     |
| 95                      | 2.2          | 4         | 10.0                           | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 5.27             | 7.60               |
| 96<br>97                | 5.4<br>4.8   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.8                                | 0.8                       | 25<br>25          | 1.80<br>1.30                       | 5.37<br>15.99    | 5.14<br>7.96       |
| 98                      | 4.2          | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 27.54            | 9.91               |
| 99<br>100               | 2.9<br>2.8   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.5<br>0.6                         | 1.5<br>0.6                | 25<br>25          | 2.50<br>1.60                       | 5.24<br>13.64    | 6.80<br>11.06      |
| 100                     | 3.9          | 4         | 10.0                           | 10.0                   | 2.0                                | 2.0                       | 25<br>25          | 3.00                               | 2.91             | 4.19               |
| 102                     | 0.8          | 4         | 10.0                           | 10.0                   | 3.7                                | 3.7                       | 25                | 4.70                               | 7.72             | 13.17              |
| 103<br>104              | 2.2<br>0.6   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 5.4<br>0.4                         | 5.4<br>0.4                | 25<br>25          | 6.40<br>1.40                       | 1.90<br>100.01   | 3.47<br>61.88      |
| 105                     | 1.6          | 4         | 10.0                           | 10.0                   | 2.5                                | 2.5                       | 25                | 3.50                               | 5.72             | 8.84               |
| 106<br>107              | 4.1<br>3.0   | 4         | 10.0                           | 10.0<br>10.0           | 1.2<br>1.6                         | 1.2                       | 25<br>25          | 2.20<br>2.60                       | 4.72<br>4.82     | 5.56<br>6.42       |
| 108                     | 0.8          | 4         | 10.0                           | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 16.81            | 22.92              |
| 109<br>110              | 1.0<br>0.9   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.5<br>3.5                         | 0.5<br>3.5                | 25<br>25          | 1.50<br>4.50                       | 44.46<br>7.14    | 32.09<br>12.03     |
| 111                     | 0.6          | 4         | 10.0                           | 10.0                   | 1.6                                | 1.6                       | 25                | 2.60                               | 22.73            | 30.29              |
| 125<br>126              | 0.6<br>2.7   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.9<br>2.1                         | 0.9<br>2.1                | 25<br>25          | 1.90<br>3.10                       | 42.44<br>3.98    | 43.54<br>5.83      |
| 127                     | 0.6          | 4         | 10.0                           | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 22.47            | 30.64              |
| wp005<br>wp006          | 1.1<br>0.2   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.8<br>3.5                         | 1.8<br>3.5                | 25<br>25          | 2.80<br>4.50                       | 11.70<br>28.57   | 16.29<br>48.13     |
| wp006<br>wp007          | 13.5         | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 2.20             | 2.05               |
| wp010                   | 4.0          | 4         | 10.0                           | 10.0                   | 0.1                                | 0.1                       | 25                | 1.10                               | 57.42            | 11.28              |
| DB3<br>DB5              | 1.8<br>4.8   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 1.6<br>0.8                         | 1.6<br>0.8                | 25<br>25          | 2.60<br>1.80                       | 8.15<br>5.99     | 10.86<br>5.75      |
| DB6                     | 0.6          | 4         | 10.0                           | 10.0                   | 0.7                                | 0.7                       | 25                | 1.70                               | 54.57            | 48.66              |
| DB7<br>DB10             | 3.6<br>7.7   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.7<br>0.3                         | 0.7                       | 25<br>25          | 1.70<br>1.30                       | 9.11<br>10.06    | 8.10<br>4.98       |
| DB11                    | 10.3         | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 11.35            | 4.03               |
| DB14<br>DB15            | 8.6<br>7.0   | 4         | 10.0<br>10.0                   | 10.0<br>10.0           | 0.6<br>0.4                         | 0.6                       | 25<br>25          | 1.60<br>1.40                       | 4.49<br>8.32     | 3.60<br>5.11       |
| DB20                    | 4.3          | 4         | 10.0                           | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 6.62             | 6.35               |
| DB21                    | 8.1          | 4         | 10.0                           | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 14.37            | 5.13               |

| Turbine<br>No./Waypoint  | Slope      | ope Design c' | sign c' Bulk unit<br>weight of<br>Peat | Unit weight of Water   | 100% Water<br>to height of<br>Peat | Depth of In-<br>situ Peat | Friction<br>Angle | Equivalent Total Depth of Peat (m) | Factor of Safety   |                 |
|--------------------------|------------|---------------|----------------------------------------|------------------------|------------------------------------|---------------------------|-------------------|------------------------------------|--------------------|-----------------|
|                          | α (deg)    | c' (kPa)      | γ (kN/m³)                              | γ <sub>w</sub> (kN/m3) | (m)                                | (m)                       | ø' (deg)          | Condition (2)                      | Condition (1)      | Condition (2    |
| DB24                     | 6.1        | 4             | 10.0                                   | 10.0                   | 0.6                                | 0.6                       | 25                | 1.60                               | 100% Water<br>6.36 | 100% Wate       |
| DB24<br>DB25             | 5.3        | 4             | 10.0                                   | 10.0                   | 1.3                                | 1.3                       | 25                | 2.30                               | 3.34               | 4.07            |
| DB30                     | 2.3        | 4             | 10.0                                   | 10.0                   | 1.9                                | 1.9                       | 25                | 2.90                               | 5.27               | 7.47            |
| DB32                     | 5.0        | 4             | 10.0                                   | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 5.79               | 5.55            |
| DB33                     | 9.7        | 4             | 10.0                                   | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 4.82               | 3.42            |
| DB34                     | 2.9        | 4             | 10.0                                   | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 8.02               | 8.67            |
| DB35                     | 4.8        | 4             | 10.0                                   | 10.0                   | 0.6                                | 0.6                       | 25                | 1.60                               | 7.99               | 6.47            |
| DB37                     | 5.3        | 4             | 10.0                                   | 10.0                   | 0.4                                | 0.4                       | 25                | 1.40                               | 10.85              | 6.68            |
| wp001                    | 0.6        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 42.44              | 43.54           |
| wp002                    | 2.1        | 4             | 10.0                                   | 10.0                   | 1.8                                | 1.8                       | 25                | 2.80                               | 6.01               | 8.37            |
| wp003                    | 2.5<br>0.7 | 4             | 10.0                                   | 10.0<br>10.0           | 1.8                                | 1.8<br>3.0                | 25<br>25          | 2.80<br>4.00                       | 5.18               | 7.20<br>18.05   |
| T14<br>T14-1             | 0.7        | 4             | 10.0                                   | 10.0                   | 3.0<br>1.9                         | 1.9                       | 25                | 2.90                               | 11.11<br>14.04     | 19.92           |
| T14-2                    | 2.1        | 4             | 10.0                                   | 10.0                   | 3.2                                | 3.2                       | 25                | 4.20                               | 3.38               | 5.58            |
| T14-3                    | 1.3        | 4             | 10.0                                   | 10.0                   | 3.5                                | 3.5                       | 25                | 4.50                               | 5.20               | 8.75            |
| T14-4                    | 0.9        | 4             | 10.0                                   | 10.0                   | 4.9                                | 4.9                       | 25                | 5.85                               | 5.50               | 9.87            |
| T14-5                    | 0.9        | 4             | 10.0                                   | 10.0                   | 5.0                                | 5.0                       | 25                | 6.00                               | 5.33               | 9.63            |
| T14-7                    | 0.8        | 4             | 10.0                                   | 10.0                   | 4.0                                | 4.0                       | 25                | 5.00                               | 7.14               | 12.38           |
| T14-8                    | 1.4        | 4             | 10.0                                   | 10.0                   | 5.0                                | 5.0                       | 25                | 6.00                               | 3.34               | 6.02            |
| T14-9                    | 1.4        | 4             | 10.0                                   | 10.0                   | 4.0                                | 4.0                       | 25                | 5.00                               | 4.17               | 7.22            |
| T14-10                   | 0.9        | 4             | 10.0                                   | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 26.67              | 28.88           |
| T14-11                   | 2.3        | 4             | 10.0                                   | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 9.77               | 10.57           |
| T14-12                   | 2.3        | 4             | 10.0                                   | 10.0                   | 1.5                                | 1.5                       | 25                | 2.50                               | 6.68               | 8.67            |
| T15-1                    | 2.3        | 4             | 10.0                                   | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 5.01               | 7.22            |
| T15-2                    | 2.3        | 4             | 10.0                                   | 10.0                   | 2.6                                | 2.6                       | 25                | 3.60                               | 3.76               | 5.87            |
| T15-3<br>T15-11          | 2.2<br>1.8 | 4             | 10.0                                   | 10.0<br>10.0           | 1.2<br>3.0                         | 1.2<br>3.0                | 25<br>25          | 2.20<br>4.00                       | 8.56<br>4.17       | 10.10<br>6.77   |
| T15-11                   | 1.8        | 4             | 10.0                                   | 10.0                   | 0.6                                | 0.6                       | 25                | 1.60                               | 23.01              | 18.68           |
| T21                      | 0.6        | 4             | 10.0                                   | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 23.53              | 32.09           |
| T21-1                    | 0.6        | 4             | 10.0                                   | 10.0                   | 5.0                                | 5.0                       | 25                | 6.00                               | 8.00               | 14.44           |
| T21-4                    | 0.6        | 4             | 10.0                                   | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 80.01              | 57.76           |
| T21-5                    | 0.6        | 4             | 10.0                                   | 10.0                   | 1.8                                | 1.8                       | 25                | 2.80                               | 22.22              | 30.94           |
| T21-6                    | 1.8        | 4             | 10.0                                   | 10.0                   | 2.8                                | 2.8                       | 25                | 3.80                               | 4.61               | 7.36            |
| T21-7                    | 0.6        | 4             | 10.0                                   | 10.0                   | 1.5                                | 1.5                       | 25                | 2.50                               | 26.67              | 34.65           |
| T21-8                    | 0.6        | 4             | 10.0                                   | 10.0                   | 1.1                                | 1.1                       | 25                | 2.10                               | 36.37              | 41.25           |
| T21-9                    | 0.6        | 4             | 10.0                                   | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 23.53              | 32.09           |
| T21-10                   | 0.6        | 4             | 10.0                                   | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 20.00              | 28.88           |
| T21-11                   | 0.6        | 4             | 10.0                                   | 10.0                   | 2.4                                | 2.4                       | 25                | 3.40                               | 16.67              | 25.48           |
| T21-12                   | 0.6        | 4             | 10.0                                   | 10.0                   | 2.0                                | 2.0                       | 25                | 3.00                               | 20.00              | 28.88           |
| T10 route<br>T101        | 4.0<br>0.1 | 4             | 10.0<br>10.0                           | 10.0<br>10.0           | 1.0<br>1.3                         | 1.0<br>1.3                | 25<br>25          | 2.00<br>2.30                       | 5.74<br>153.85     | 6.20<br>188.33  |
| T101<br>T102             | 0.1        | 4             | 10.0                                   | 10.0                   | 1.3                                | 1.5                       | 25                | 2.30                               | 153.85<br>53.33    | 188.33<br>69.31 |
| T102                     | 1.2        | 4             | 10.0                                   | 10.0                   | 3.0                                | 3.0                       | 25                | 4.00                               | 6.35               | 10.32           |
| T104                     | 2.9        | 4             | 10.0                                   | 10.0                   | 2.2                                | 2.2                       | 25                | 3.20                               | 3.65               | 5.42            |
| T15                      | 1.8        | 4             | 10.0                                   | 10.0                   | 1.7                                | 1.7                       | 25                | 2.70                               | 7.36               | 10.03           |
| T151                     | 1.4        | 4             | 10.0                                   | 10.0                   | 4.2                                | 4.2                       | 25                | 5.20                               | 3.81               | 6.67            |
| T1510                    | 2.9        | 4             | 10.0                                   | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 10.03              | 9.64            |
| T152                     | 1.4        | 4             | 10.0                                   | 10.0                   | 4.5                                | 4.5                       | 25                | 5.50                               | 3.56               | 6.30            |
| T156                     | 2.1        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 12.36              | 12.67           |
| T157                     | 3.7        | 4             | 10.0                                   | 10.0                   | 1.2                                | 1.2                       | 25                | 2.20                               | 5.15               | 6.07            |
| T159<br>MCKOS 1.1        | 1.7        | 4             | 10.0                                   | 10.0                   | 2.5                                | 2.5                       | 25                | 3.50                               | 5.52               | 8.54            |
|                          | 6.8        | 4             | 10.0                                   | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 3.41               | 3.66            |
| MCKOS 1.2<br>MCKOS 1.3   | 4.6<br>5.7 | 4             | 10.0<br>10.0                           | 10.0<br>10.0           | 1.1<br>0.4                         | 1.1<br>0.4                | 25<br>25          | 2.10<br>1.40                       | 4.57<br>10.10      | 5.17<br>6.22    |
| MCKOS 1.3                | 5.7        | 4             | 10.0                                   | 10.0                   | 0.4                                | 0.4                       | 25                | 1.40                               | 19.81              | 7.11            |
| VICKOS 1.4<br>VICKOS 1.5 | 4.1        | 4             | 10.0                                   | 10.0                   | 0.2                                | 0.9                       | 25                | 1.90                               | 6.20               | 6.35            |
| MCKOS 1.6                | 1.1        | 4             | 10.0                                   | 10.0                   | 4.7                                | 4.7                       | 25                | 5.70                               | 4.26               | 7.60            |
| MCKOS 1.7                | 1.6        | 4             | 10.0                                   | 10.0                   | 1.5                                | 1.5                       | 25                | 2.50                               | 9.53               | 12.38           |
| MCKOS 1.8                | 4.9        | 4             | 10.0                                   | 10.0                   | 0.8                                | 0.8                       | 25                | 1.80                               | 5.92               | 5.68            |
| MCKOS 1.9                | 2.2        | 4             | 10.0                                   | 10.0                   | 2.4                                | 2.4                       | 25                | 3.40                               | 4.28               | 6.54            |
| 1CKOS 1.10               | 3.4        | 4             | 10.0                                   | 10.0                   | 2.1                                | 2.1                       | 25                | 3.10                               | 3.19               | 4.67            |
| 1CKOS 1.11               | 3.4        | 4             | 10.0                                   | 10.0                   | 1.5                                | 1.5                       | 25                | 2.50                               | 4.46               | 5.78            |
| 1CKOS 1.12               | 3.1        | 4             | 10.0                                   | 10.0                   | 1.0                                | 1.0                       | 25                | 2.00                               | 7.29               | 7.89            |
| 1CKOS 1.13               | 5.7        | 4             | 10.0                                   | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 8.16               | 5.86            |
| 1CKOS 1.14               | 6.4        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 4.02               | 4.09            |
| 1CKOS 1.15               | 4.8        | 4             | 10.0                                   | 10.0                   | 0.5                                | 0.5                       | 25                | 1.50                               | 9.59               | 6.90            |
| 1CKOS 1.16<br>1CKOS 1.17 | 1.4<br>5.6 | 4             | 10.0<br>10.0                           | 10.0<br>10.0           | 3.5<br>1.6                         | 3.5<br>1.6                | 25<br>25          | 4.50<br>2.60                       | 4.57<br>2.58       | 7.70<br>3.42    |
| 1CKOS 1.17<br>1CKOS 1.18 | 6.1        | 4             | 10.0                                   | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 19.08              | 6.85            |
| 1CKOS 1.18               | 5.8        | 4             | 10.0                                   | 10.0                   | 0.2                                | 0.2                       | 25                | 1.70                               | 5.66               | 5.02            |
| 1CKOS 1.19               | 4.7        | 4             | 10.0                                   | 10.0                   | 1.3                                | 1.3                       | 25                | 2.30                               | 3.73               | 4.55            |
| 1CKOS 1.20               | 3.4        | 4             | 10.0                                   | 10.0                   | 1.8                                | 1.8                       | 25                | 2.80                               | 3.72               | 5.17            |
| 1CKOS 1.22               | 1.3        | 4             | 10.0                                   | 10.0                   | 1.4                                | 1.4                       | 25                | 2.40                               | 12.99              | 16.41           |
| 1CKOS 1.23               | 1.5        | 4             | 10.0                                   | 10.0                   | 1.5                                | 1.5                       | 25                | 2.50                               | 9.88               | 12.84           |
| 1CKOS 1.24               | 2.0        | 4             | 10.0                                   | 10.0                   | 1.8                                | 1.8                       | 25                | 2.80                               | 6.36               | 8.84            |
| ACKOS 1.25               | 1.9        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 13.48              | 13.82           |
| ACKOS 1.26               | 1.2        | 4             | 10.0                                   | 10.0                   | 1.6                                | 1.6                       | 25                | 2.60                               | 11.91              | 15.87           |
| /ICKOS 1.27              | 3.7        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 6.97               | 7.14            |
| ACKOS 1.28               | 4.4        | 4             | 10.0                                   | 10.0                   | 0.2                                | 0.2                       | 25                | 1.20                               | 26.13              | 9.40            |
| /ICKOS 1.29              | 1.8        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 13.90              | 14.26           |
| ACKOS 1.30               | 1.5        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 16.47              | 16.89           |
| ACKOS 1.31               | 1.8        | 4             | 10.0                                   | 10.0                   | 1.1                                | 1.1                       | 25                | 2.10                               | 11.74              | 13.31           |
| ACKOS 1.32               | 2.1        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90                               | 12.36              | 12.67           |
| ACKOS 1.33               | 1.6        | 4             | 10.0                                   | 10.0                   | 0.9                                | 0.9                       | 25                | 1.90<br><b>Minimum</b> =           | 15.89<br>1.05      | 16.29<br>1.81   |
|                          |            |               |                                        |                        |                                    |                           |                   |                                    |                    |                 |

Notes:

(1) Assuming a bulk unit weight of peat of 10 (kN/m³)

(2) Assuming a surcharge equivalent to fill depth of 1.0 (m)

(3) Slope inclination (β) based on site readings and contour plans.

(4) FoS is based on slope inclination and shear test results obtained from published data.

(5) Peat depths based on peat depth probes.

(6) For load conditions see Report text.

(7) Minimum acceptable factor of safety required of 1.3 for first-time failures based on BS: 6031:1981 Code of practice for Earthworks.



# APPENDIX E METHODOLOGY FOR RISK ASSESSMENT



### **Methodology for Risk Assessment**

A risk assessment is carried out for the main infrastructure elements at the proposed wind farm development. This approach follows the guidelines for geotechnical risk management as given in Clayton (2001), as referenced in PHRAG, and takes into account the approach of MacCulloch (2005).

The risk assessment uses the results of the stability analysis (deterministic approach) in combination with qualitative factors (Table A), which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability to assess the risk for each infrastructure element.

The stability analysis takes into account the peat depth, slope angle and shear strength properties of the peat (see section 7 of report). The qualitative factors used in the risk assessment have been compiled based on AGEC's experience of assessments and construction in peat land sites and peat failures throughout Ireland and the UK.

It should be noted that the presence of one of the qualitative factors alone from Table A is unlikely to lead to peat instability/failure. Peat instability/failure at a site is generally the combination of a number of these factors occurring at a particular location.

Table A Qualitative Factors used to Assess Potential for Peat Failure

| Qualitative Factor                  | Type of Feature/Indicator for each Qualitative Factor (1) | Explanation/Description of<br>Qualitative Factor                                                                                                                                                   |  |  |
|-------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Evidence of sub peat                | No Possibly                                               | Based on site walkover observations. Sub peat water flow generally occurs in the form of natural piping at the base peat. Where there is a constriction or blockage in natural pipes a build-up of |  |  |
| water flow                          | Probably                                                  | water can occur at the base of the peat causing a reduction in effective stress at the base of the peat resulting in failure;                                                                      |  |  |
|                                     | Yes                                                       | this is particularly critical during period of intense rainfall.                                                                                                                                   |  |  |
|                                     | Dry                                                       | Based on site walkover observations. The presence of surface water flow                                                                                                                            |  |  |
| Evidence of surface water           | Localised/Flowing in drains                               | indicates if peat in an area is well drained or saturated and if any                                                                                                                               |  |  |
| flow                                | Ponded in drains                                          | additional loading from the ponding of surface water onto the peat is likely.                                                                                                                      |  |  |
|                                     | Springs/surface water                                     |                                                                                                                                                                                                    |  |  |
|                                     | No                                                        | Based on site walkover observations. The presence of clustering of relict                                                                                                                          |  |  |
| Evidence of previous failures/slips | In general area                                           | failures may indicate that particular pre-existing site conditions predispose                                                                                                                      |  |  |
|                                     | On site                                                   | a site to failure.                                                                                                                                                                                 |  |  |



| Qualitative Factor                              | Type of Feature/Indicator for each Qualitative Factor (1) | Explanation/Description of<br>Qualitative Factor                                                                                                                                       |
|-------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | Within 500m of location                                   |                                                                                                                                                                                        |
|                                                 | Grass/Crops                                               | Based on site walkover observations. The type of vegetation present                                                                                                                    |
|                                                 | Improved Grass/Dry Heather                                | indicates if peat in an area is well drained, saturated, etc. Vegetation that indicates wetter ground may also                                                                         |
| Type of vegetation                              | Wet Grassland/Juncus (Rushes)                             | indicates wetter ground may also indicate softer underlying peat deposits.                                                                                                             |
|                                                 | Wetlands Sphagnum (Peat moss)                             |                                                                                                                                                                                        |
|                                                 | Concave                                                   | Based on site walkover observations. Slope morphology in the area of the                                                                                                               |
| General slope<br>characteristics                | Planar to concave                                         | infrastructure location is an important factor. A number of recorded peat                                                                                                              |
| upslope/downslope from infrastructure location  | Planar to convex                                          | failures have occurred in close proximity to a convex break in slope.                                                                                                                  |
|                                                 | Convex                                                    |                                                                                                                                                                                        |
|                                                 | No                                                        | Based on inspection of exposures in general area from site walkover.                                                                                                                   |
| Evidence of very soft/soft clay at base of peat | Yes                                                       | Several reported peat failures identify the presence of a weak layer at the base of the peat along which shear failure has occurred.                                                   |
| Evidence of mechanically                        | No                                                        | Based on site walkover observations.  Mechanically cut peat typically cut using a 'sausage' machine to extract peat for harvesting. Areas which have been cut in this manner have been |
| cut peat                                        | Yes                                                       | linked to peat instability. The mechanical cuts can notably reduce the intrinsic strength of the peat and also allow ingress of rainfall/surface water.                                |
| Evidence of quaking or                          | No                                                        | Based on site walkover observations.  Quaking/buoyant peat is indicative of highly saturated peat, which would generally be considered to have a low                                   |
| buoyant peat                                    | Yes                                                       | strength. Quaking peat is a feature on sites that have been previously linked with peat instability.                                                                                   |
| Evidence of bog pools                           | No                                                        | Based on site walkover observations. Bog pools are generally an indicator of areas of weak, saturated peat. Commonly where there are open areas of water within peat these can be      |



| Qualitative Factor | Type of Feature/Indicator for each Qualitative Factor <sup>(1)</sup> | Explanation/Description of Qualitative Factor                                                                                                                                                                               |
|--------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Yes                                                                  | interconnected, with the result that there may be sub-surface bodies of water. The presence of bog pools have been previously linked with peat instability.                                                                 |
| Other              | Varies                                                               | In addition to the above features/<br>indicators and based on site recordings<br>the following are some of the features<br>which may be identified: Excessively<br>deep peat, weak peat, overly steep<br>slope angles, etc. |

Note (1) The list of features/indicators for each qualitative factor are given in increasing order of probability of leading to peat instability/failure.

## **Probability**

The likelihood of a hazard (peat failure) occurring has been based on the results of the stability calculation FoS and qualitative factors from Table B, where present.

The probability assigned to the FoS and qualitative factors is judged on a qualitative scale (Table B).

| Scale | Factor of Safety | Probability     |
|-------|------------------|-----------------|
| 1     | 1.30 or greater  | Negligible/None |
| 2     | 1.29 to 1.20     | Unlikely        |
| 3     | 1.19 to 1.11     | Likely          |
| 4     | 1.01 to 1.10     | Probable        |
| 5     | ≤1.0             | Very Likely     |

**Table B Probability Scale** 

| Scale | Likelihood of Qualitative Factor<br>leading to Peat Failure | Probability of Failure |
|-------|-------------------------------------------------------------|------------------------|
| 1     | Negligible/None                                             | Least                  |
| 2     | Unlikely                                                    |                        |
| 3     | Probable                                                    |                        |
| 4     | Likely                                                      |                        |
| 5     | Very Likely                                                 | Greatest               |

## **Impact**

The severity of the risk is also assessed qualitatively in terms of impact. The impact of a peat failure on the environment within and beyond the immediate wind farm site is assessed based on the potential travel distance of a peat failure. Where a peat failure enters a water course it can travel a considerable distance downstream. Therefore the



proximity of a potential peat failure to a drainage course is a significant indicator of the likely potential impact.

The risk is determined based on the combination of hazard and impact. A qualitative scale has been derived for the impact of the hazard based on distance of infrastructure element to a watercourse (Table C).

The location of watercourses is based on topographic maps and supplemented by site observations from walkover survey. Note that not all watercourses are shown on maps.

Table C Impact Scale

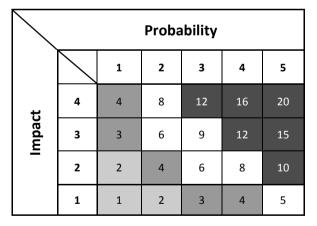
| Scale | Criteria                                                          | Impact          |
|-------|-------------------------------------------------------------------|-----------------|
| 1     | Proposed infrastructure element greater than 150m of watercourse  | Negligible/None |
| 2     | Proposed infrastructure element within 150 to 101m of watercourse | Low             |
| 3     | Proposed infrastructure element within 100 to 51m of watercourse  | Medium          |
| 4     | Proposed infrastructure element within 50 m of watercourse        | High            |

## **Risk Rating**

The degree of risk is determined as the product of probability (P) and impact (I), which gives the Risk Rating (R) as follows:

The Risk Rating is calculated from:  $R = P \times I$ 

The Risk Rating can range from 1 to 20 as shown in Table D.


**Table D Qualitative Risk Rating** 

10 to 20

5 to 9

3 to 4

1 to 2



# Risk Rating & Control Measures

Unacceptable: re-location or significant control measures required Substantial: notable control measures required Tolerable: only routine control measures required Trivial: none or only routine control measures required

Note. Where any individual contributory factor is given a probability of 5 then this defaults to an 'Unacceptable' risk rating irrespective of the impact.

In many cases a simple 4- to 5-level scale is considered sufficient (Clayton, 2001); in this case a 4-level scale is used. The control measures in response to the qualitative risk ratings are included in the Geotechnical Risk Register for each turbine in Appendix C.

The risk rating is calculated individually for each contributory factor. Control measures are required to reduce the risk to at least a 'Tolerable' risk rating.